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Introduction

This document is a final report describing the research activities performed under the
contract F19628-K-92-0007, “On the Modelling of Space Plasma Dynamics and Structure.”
The research was focused into two related areas. These were:

(A) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled
magnetosphere-ionosphere auroral arc system.

(B) An examination of electron acceleration and pitch-angle scattering due to wave-
particle interactions in the ionosphere and radiation belts.

In the next section we present a more detailed description of the two research areas.
Following that are copies of the refereed publications which resulted from the research

investigations.

Description of Research

In this section we present a more detailed synopsis of the research areas which were inves-
tigated during the period of the contract.

(A) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled
magnetosphere-ionosphere auroral arc system.

In this area we have focused on the development of a self-consistent model of an auroral
arc system. This includes elements such as the structure of the magnetospheric generator
mechanism, the role of heavy ions such as oxygen in determining the arc structure, and the
interplay between the large scale background magnetospheric electric and magnetic fields
and the small scale auroral arcs embedded within them.

It has long been recognized that there is a coupling between microscopic single ion
dynamics, as defined by the ion gyroradius, and macroscopic MHD phenomena. Two ob-
vious examples are kinetic Alfvén waves and the ion tearing mode. Another important
example is the effect of the large scale electric field variation near the Harang discontinuity
on single ions as they drift earthward from the magnetotail. We found that under substorm
growth phase conditions, single oxygen ion trajectories were modified and caused macro-
scopic density striations. Current conservation of the associated inertial currents implied a
connection between the striations and auroral arc formation. This result is of importance
because it provides a natural mechanism for the formation of thin ordered structures (the
arcs) from a uniform source of plasma flowing in from the geotail region. This work was
published in the Journal of Geophysical Research and is reproduced in this report. We
have extended the above analysis by examining the regions of strong curvature inherent
in the large scale magnetospheric electric fields within the Harang discontinuity region. It
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was found that for sufficiently strong curvature in the earthward electric field, the heavy
ions became untrapped. Thus there are situations which invalidate even a nonideal MHD
theory which treats finite orbit effects in a perturbative manner. It was recently shown
that these heavy ions can contribute to substorm onset [AGU Geophysical Monograph 93;
JGR 1995 (both reprinted in this report)].

In addition to this work we have also developed the theory that parallel auroral arc
structure is determined by resonant kinetic Alfvén waves bouncing from pole to pole. Be-
cause they do not travel exactly along the magnetic field, but deviate slightly, they bounce
off the ionosphere in slightly different positions with each bounce, giving rise naturally to
the observed arc spacing and resonant frequencies. The results have been expressed in
terms of a Green’s function solution for the incoming and outgoing fluctuating magnetic
fields.

Our current research is focused on the effects caused by the variation of the magnetic
fields in the vicinity of the magnetospheric auroral arc structure. These fields can arise
from two sources: the large scale background field and the self-consistent fields generated
by the currents within the arc itself. Although our work is still in its preliminary stages,
we have already determined that the constraints imposed on the system by the large scale
field can help provide an explanation for the limited spatial region that is associated with
auroral arc formation. The small scale fields will be integral to the development of a
self-consistent theory of the magnetospheric arc generator.

(B) An examination of electron acceleration and pitch-angle scattering due to wave-
particle interactions in the ionosphere and magnetosphere.

In this area we have studied the following problems:

(1) The interaction of a relativistic test particle with an electromagnetic wave in a spa-
tially varying magnetic field. Observations of proton pitch-angle scattering apparently
induced by artifically produced VLF waves motivated this study of a ubiquitous phe-
nomenon. Under a previous contract, we had studied cyclotron-resonant behavior
with the simplifying assumption of constant background magnetic field, which deter-
mines the particle’s cyclotron frequency. Significant changes in energy and pitch angle
were found to occur when the Doppler-shifted wave frequency was a multiple of the cy-
clotron frequency. Here, we considered the complication that as a particle moves along
a field line, the cyclotron frequency changes, so that the particle enters, experiences,
and leaves distinct regions of resonance. This time-dependent interaction was shown
to have two distinct regimes, depending on the relative strength of the magnetic field
inhomogeneity. In the weak regime, the effect of each resonance is proportional to the
square root of the wave amplitude, and individual resonances combine additively. In
the strong regime, the effect of each resonance is proportional to the wave amplitude,
and individual resonances combine independently, giving a random walk (diffusion)
in energy and pitch angle. This work resulted in a paper published in The Journal of
Geophysical Research.
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(2)

(3)

(4)

(5)

The quasilinear interaction of radiation belt electrons with a turbulent spectrum of
whistler waves (hiss). The prevailing theory of particle-hiss interaction was exam-
ined, and it was found that the corresponding numerical calculations in the literature
were inadequate; only 5 harmonic interactions were considered in the evaluation of
the pitch-angle diffusion coefficients, which is insufficient for electrons with energy
above 500 keV. Efficient algorithms were developed, based on upper bounds, and the
calculations were redone keeping up to 100 harmonics. The diffusion coefficients were
naturally increased, and the corresponding particle flux distribution functions were
decreased in the outer zone. This work resulted in a paper published in The Journal
of Geophysical Research.

The response of outer zone electrons and protons to a model of the sudden storm
commencement (SSC) of March 24, 1991. An explicit model for the pulse profile,
developed by the group at Dartmouth, has been used in test particle simulations to
demonstrate the rapid injection and energization of electrons and protons to form the
“second belt.” Analytical work on the resulting guiding center equations of motion
have yielded insights into the physical mechanism, and indicate when such pulses are
likely to be effective, and for which particles. This work has been presented as an
AGU meeting, and is still in progress.

Proton radiation belt structure and evolution as observed by CRRES. The quiet and
active models derived from Protel observations have been used to study flux and
phase space density profiles parameterized by constant first adiabatic invariant. The
steady-state diffusion model has been shown not to be a good description even for
the quiet, pre-storm period. Adjustment of parameters, variation of boundary fluxes,
even imposition of ad hoc wave-particle effects have been considered and rejected as
explanations for the descrepancy. On the other hand the hypothesis of a drastic,
non-adiabatic disturbance prior to the launch of CRRES, followed by conventional
diffusive relaxation during the first half of the CRRES mission, is a plausible and
consistent scenario. This conclusion follow from comparing observed time variation
of the data with explicitly evaluated diffusion and loss terms prescribed by diffusion
theory. Even so, detailed agreement is achieved only for energy below about 20 MeV
and L less than about 2.5, beyond which the data is too variable to evaluate the
derivatives reliably. Progress on this work has been presented at AGU meetings, the
GEM meeting (Snowmass, 1994), the Workshop on Radiation Belts (Brussels, 1995),
and is being written up for publication in JGR.

A study of the interaction of protons and whistler waves near the quasi-electrostatic
limit in equatorial regions of the plasmasphere. The interaction of protons with quasi-
electrostatic whistler waves were investigated using a test particle Hamiltonian for-
malism, and quasilinear diffusion theory. A number of experimental observations
[Kovrazhkin et al., 1983, 1984; Koons, 1975, 1977] have shown that VLF transmis-
sions pulses from the ground can precipitate 80 to 500 keV protons into the ionosphere.
The predominant feature of the whistler proton interaction is the crosssing of multiple
harmonics of the proton gyrofrequency near equatorial regions of the plasmasphere.

The wave frequency spectrum is coherent, and varies as a function of the distance
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(6)

(7)

(8)

along the field line, thus the inhomogeneity of the magnetic field is compensated by
the frequency variation. This way proton whistler interactions satisfy the conditions
for second-order resonances for all the gyroharmonics. The combined contributions
of all the harmonics allow the protons which are near the loss cone to diffuse toward
smaller pitch angles. The quasilinear diffusion coefficients in energy, cross energy/pitch
angle, and pitch angle are obtained for second-order resonant interactions.

The interaction of ring current and radiation belt protons with ducted plasmaspheric
hiss. We have also studied the interaction of ring current and radiation belt protons
with ducted plasmaspheric hiss [Kozyra et al., 1995]. The evolution of the bounce-
averaged ring current/radiation belt proton distribution is obtained for multiple har-
monic resonances crossing with the plasmaspheric hiss. Because the wave spectrum
is incoherent, only first-order resonances contribute. The interaction with the elec-
trons mantains the level of the waves, thus the energy is transferred between energetic
electrons and protons using the hiss as an intermediary. The similarity between the
distributions observed by the OGO 5 satellite, and those resulting from the simula-
tions raises the possibility that interaction with plasmaspheric hiss may play a role in
forming and mantaining the characteristic zones of anisotropic proton precipitation in
the subauroral ionosphere.

Pitch angle scattering of low energy electrons by whistler mode waves in equatorial
regions of the plasmasheet. The interaction of oblique whistler waves and electrons
of energy below 10 keV, to describe diffuse auroral precipitation. Whistler waves of
large enough amplitude have been observed in the outer magnetosphere. Figure 3
of Burke et al. [1995] gives an example of these waves as observed by the CRRES
satellite. Experimental observations [Johnstone, et al., 1993], show that the low energy
electrons (< 10 keV) are precipitated by the whistler waves whose frequencies are
close to the electron cyclotron frequency. We investigated a theoretical model to
explain the experimental results. Second-order resonant interactions are shown to be
very efficient in precipitating the electrons toward the atmospheric loss cone. The
frequency spectrum is assumed to be coherent as present in chorus emissions, and the
waves propagate at large angles with respect to the geomagnetic field so that they are
near the quasi-electrostatic limit.

The generation of whistler chorus outside the plasmasphere. The generation of cho-
rus and triggered emissions in the magnetosphere through resonant first harmonic
interactions with energetic electrons. The mechanism of dynamical spectrum forma-
tion inside a chorus element is closely connected with the triggering emission problem
[ Trakhtengerts, 1994]. The basic theory for triggered emisions was laid out by Helli-
well, [1967). It is well known that chorus emissions are generated in the plasmasheet
from monochromatic wavelets in the underlying hiss [Hattori et al., 1991]. Presently
we are investigating the non-linear current that result from second-order resonant en-
ergetic electrons, and that generates the chorus. When these emissions propagate at
large angles then they interact coherently with the low energy electrons (< 10 keV)
that form the diffuse aurora.
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O™ phase bunching and auroral arc structure
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Abstract. The equations of motion are solved for ions moving in a model electric field
that corresponds to the nightside equatorial region of the magnetosphere. The model
represents the poleward region of the Harang discontinuity mapped to the
magnetosphere. Within this region the model electric field has a constant earthward
gradient superimposed on a constant dawn-to-dusk electric field. In combination with
the earthward drift motion due to the dawn-to-dusk field, the electric field gradient
introduces an earthward inertia drift, which is proportional to the ion mass and
therefore faster for O ions than for H™ ions or electrons. It is also found that the
entry of the ions into the gradient region causes phase bunching and as a result ion
density striations form. The striations are enhanced for more abrupt changes in the
electric field gradient, a weaker magnetic field, a stronger cross-tail electric field and
colder O™ ions. The first two conditions apply during the growth phase of a substorm.
Using the Tsyganenko (1987) model a minimum electric field gradient value of 1 X
107 V/m? ((1 mV/m)/1000 km) at L = 6-7 is found. Charge neutrality requires
coupling with the ionosphere through electrons moving along magnetic field lines, and
such electrons may be the cause of multiple auroral arcs.

Introduction

In an electric field, such as shown in the bottom panel of
Figure 1, plasma sheet O* ions that are E x B drifting
toward the Earth (region A) encounter a weak, positive
electric field gradient (region B) in the Harang discontinuity
region (HDR). We concentrate on the ion injection into and
the dynamics within region B as labeled in Figure 1. The
effect of the full HDR, including the field reversal region, on
the ion dynamics will be treated in a future paper. It is found
that variations in electric field gradients can dramatically
change the shape of the ion orbits as seen from Figure 2. In
the presence of a finite electric field gradient we will show
that single ion effects can be important over much larger
distances than the ion gyroradius. It is also found that a
velocity distribution that is isotropic in the plane perpendic-
ular to the magnetic field in a region with zero electric field
gradient will become anisotropic upon entering a region with
a nonzero gradient. This mechanism is called phase bunch-
ing. The net effect is that the ion density, which was initially
uniform, becomes striated when the earthward electric field
gradient is sufficiently large.

The factors that enhance the presence of O* density
striations are also associated with substorms. They are (1) an
intensification of the HDR [Erickson et al., 1991] G.e.,
steeper electric field gradients); (2) equatorial enhancement
of ionospheric O* [Cladis and Francis, 1992; Daglis et al.,

Copyright 1994 by the American Geophysical Union.
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1990]; (3) an enhancement of the cross-tail electric field; and
(4) a local weakening of the magnetic field.

We address two main questions in this paper. (1) Can the
stretching of magnetic field lines in the midnight sector and
the estimates of the electric field gradients be consistent with
a derived criterion for striation formation? (2) If these
striations do occur what are the implications, if any, for
auroral arc structure?

The paper is organized as follows. First, we analytically
solve the equations of motion for a constant, earthward
electric field gradient and a constant east-west electric field
as inferred from Marklund [1984)]. Second, phase bunching,
and the resulting spatial striation mechanism, is defined and
quantified. Third, a Monte Carlo calculation is carried out
for a Maxwellian velocity distribution in order to show that
phase bunching is not averaged out at realistic ion tempera-
tures. Finally, we show that magnetic field line stretching
and an enhanced cross-tail electric field lowers the minimum
value of the electric field gradient at which striations will
occur. Implications for auroral arc structure are then dis-
cussed.

The Equations

Cole [1976] originally treated single-ion motion in a con-
stant electric field gradient. In his model the electric field and
gradient only had components in the earthward (x) direc-
tion. Because of the unidirectional nature of the electric field
E, the ions drifted solely in the eastward (—y) direction with
a drift speed given by
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Figure 1. A simplified Harang discontinuity model as seen

in the (upper) ionosphere and the (bottom) equatorial plane.
The upper panel was obtained from the lower panel by
mapping the electric field in invariant latitude using the
Tsyganenko [1987] model, Kp = 5, at local midnight. The
letters A and B denote the regions of interest for the present
paper. It is interesting to note the similarity between these
results and the observations of Maynard [1974].

. szo wz
\d)=—§}—+vy0 l—§ (1
where
e dE,
Q=wi-—= 2
@ M dx 2

E, is the electric field value at the initial ion position, e is the
electronic charge, B is the magnetic field value, Vq is the y
component of the initial velocity, and w = eB/M is the ion
magnetic gyrofrequency.

Therefore in a region of a positive E field gradient the
effective drift velocity exceeds the usual E/B value and for a
negative gradient it is less. Note in (2) that the first term on the
right-hand side varies as M =2 while the second term varies as
M~'. Heavy ions therefore are more efficiently affected by an
electric field gradient. This is the source of the preferential
decoupling of the O ions relative to protons (H) that was
mentioned above. Lysak [1981] and Yang and Kan [1983] have
suggested that the enhanced ion drift velocity as given by (2) is
responsible for ion conics in narrow arc structures where one
would expect large electric field gradients.

In this paper we extend Cole’s analysis to include an E,
component of the electric field. The equations of motion in a
two-dimensional electric field are given by

dVX_ e
2 —XI‘{EX[X(I)]“F V,B}
: (3)
f_‘_}_{_i E,-V.B
dt _M( y = ViB)

These equations can easily be recast as a single second-order
inhomogeneous differential equation:

d*v, , € dEx w’E,
preaid O V.= (4)

- A7 dx B
Equation (4) represents a harmonic oscillator with a fre-

quency that is modified by the presence of an E field
gradient. Its solution is
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w Eo\ .

+ S (Vyo + E) sin (Q1) (&)
where V,, and Vg are determined by the initial conditions
att = 0. E, is the value of the x component of the electric
field for x = x,, which in the present instance is zero. It is
assumed that dE,/dx > 0 only for x > x4. The subscript B
will be used to denote parameters defined in this region. The
letter A denotes the region x < xo. E, is the cross-tail
electric field which is assumed to be constant. It is important
to note that positive E field gradients demagnetize the
particle while negative E field gradients simulate a more
intense magnetic field. If Q% < 0 [Cole, 1976], the particle is
exponentially accelerated. If Q? = 0, then V, increases
quadratically with time. The x component of the velocity for
the case 12 > 0is given by (5). Equation (6) is the expression
for the y component of the velocity.

wz EO
Vy(t) = Vyo — oz Vyo + 3z [1 - cos (Q1)]
w w?E,\ | w’E, dE,
T l\Vemgrg) i@ gt ©

Figure 2 illustrates the relevant phase angles for an ion
E X B drifting toward the Earth. As the ion exits region A it
may cross the boundary (x = x,) more than once. Therefore
care must be taken that the final ion crossing is chosen. Note

A LAB FRAME B
= /_—~\
—mm
e & = —56°
R, = 0.16
- R, = 2.0
@ = ar = 3 |BOUNDAR
- - OUNDARY &£ ag = 11.8°
. DRIFT FRAME :
Ya: Y H
> Voa v :
i/ léx LA
"""" -7 w = —eB/M X

Figure 2. Ion kinematics in both the (top) laboratory and
the (bottom) drift reference frames. The orbit in the labora-
tory frame is to be interpreted in V, versus X coordinates,
while those in the drift frames are in terms of ¥ versus X. O "
jons E X B drift toward the Earth (left to right in the figure).
In region A the electric field gradient is zero. At the
boundary (thick vertical line) the gradient changes discon-
tinuously to a constant value in region B which has a
profound effect on the ion orbit. The ion may undergo
multiple boundary crossings and care must be taken in
choosing the appropriate initial conditions. In this case the
ion first crosses the boundary at an angle «; equal to —56° in
the drift frame of region A while exiting at an angle of 3°. It
is the stretching out of the ion orbit as seen in region B (top
portion’ of figure) that leads to ion density striations. The
bottom part of the figure denotes the ion orbit in the two drift
frames.




that « and ap are defined in the respective drift frames of
regions A and B. In Figure 2 we have chosen a = 3°. The
corresponding phase angle ap in the region B drift frame is
11.8°. This difference is discussed in detail below. The
components of the initial velocity can be written:

E,
V=V cos (a) + 3

@)

Vyo=V sin (a) - =
=V sin -

¥0 a B

where V is the ion gyrovelocity in the zero gradient region

(region A) and a is the phase angle of V relative to the x axis

at x = x,. We now assume that (5) and (6) for region B can

be expressed in the following form:

VX(I) = de + VB COs (Qt - aB)
)

V,(0) = Vay(t) = Vs :)—2- sin (Q7 — ap)

where V,, and de(t) are the drift terms from (5) and (6),
respectively. The coefficients of the trigonometric terms in
(8) correspond to an elliptical polarization of the velocity
vector in the drift frame [Cole, 1976]. Expanding the trigo-
nometric functions in (8) the usual way and equating the
results to (5) and (6) with the initial conditions as defined in
(7), we find the results shown in (9) that hold forall r = 0. It
is possible to show that at ¢ = 0, (8) reduces to (7) if the
appropriate drift velocities are used together with the rela-
tions shown in (9).

w? Ey
Vg cos (ap) =V cos (@) + 1_57 E (9a)

Vg sin (ap) = % V sin (a) (9b)

Phase Bunching

First, we note that the two expressions in (9) can be
combined as

a) .
a sin (a)

tan =
o cos (a) —-E—y- —ui-z-— 1
BV \Q?

(10)

Equation (9a) represents the continuation of the x compo-
nent of the velocity in the laboratory frame; i.e., V.p (lab) =
V,a(lab) at t = 0. The x component of the drift velocity in
region B is («/Q)? times that in region A. Therefore the x
component of the gyration velocity as seen at the boundary
from the drift frame of region B is less than that in region A.
In fact, if the relative drift velocity between regions B and A
is sufficiently large then all ions entering region B are seen as
moving tailward in the region B drift frame. (They have a
phase angle 7/2 < ap < 37/2.) This is the source of phase
bunching and the resulting density striations. We will now
quantify these statements.

Figure 3a is a plot of (10) for various values of R, = o/,
the ratio of the gyrofrequency in region A to that in region B.

7
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The relationship between R, and the corresponding electric
field gradient is given by
e dE, (R, —1)

M dx R: (1

Note the quadratic dependence on the magnetic field value.
Figure 3b is a similar plot for various values of R, =
E,/(BV), the ratio of the drift speed to the gyrovelocity in
region A. The case R,, = 1 in Figure 3a is the zero gradient
condition and corresponds to an identity mapping of « onto
ap. As R, increases one sees that the ions tend to cluster
around ap = Fm or the tailward direction. The clustered
jons tend to gyrate in phase and form density striations as
discussed below.

In Figure 3a we use for realism an O" energy of 2keV, a
B field value of 40 nT and a value for the cross-tail electric
field of 1 mV/m. These values correspond to R, = 0.16. As
R, increases (drift speed in region A enhanced relative to
gyrovelocity) phase bunching is enhanced as seen in Figure
3b. On the other hand, at higher ion energies R, decreases
and, hence, phase bunching (i.e., density striations) is
smeared out. Note, however, that even for the infinite
gyrovelocity case (R, = 0) there is a residual phase bunch-
ing effect. Therefore a more taillike configuration (lower B
field values), colder ions and enhanced values of E, all
intensify the density striations.

We will now discuss the dependence of the gyrovelocity in
region B on the phase angle «. This dependence arises
because of the difference in the drift speed components in
the two regions as seen from (9). We define the difference in
the earthward drift velocity in the following:

AV w? 1 Ey 12)
dx — QZ B ( )

Then the gyrovelocity in region B is determined from (9) as

2
V2 =[V cos (a) — AV ]2+V23’— in ()2 (13)
B dx QZ Sin (o

Figures 4a and 4b show a plot of (13) for two different sets
of input parameters. The R, = 1 case is not shown since the
velocity ratio is then one for all a. Note from Figure 4a that
as R, increases Vp also increases which reflects the com-
plex mixture of gyrovelocity and drift velocity in region B.
This implies that oxygen ions will generally have a higher
gyrovelocity in a region with a sufficiently large positive
electric field gradient. Figure 4b shows the variation of Vg as
a function of R,. The rather dramatic behavior of these
curves near « = 0 can easily be understood by examining the
first term on the right-hand side of (13). V g approaches zero
at @ = 0 when V = AV,. Recall that « is the exit phase
angle at the boundary. The kinematics of the boundary
crossing, as shown in Figure 2, restrict the values of a to a
finite range around a = 0 in Figures 3 and 4. Because of the
clockwise nature of the gyromotion and the value of R,
defined above the ions initially intersect the boundary over a
limited range of angles. If the initial phase angle is too
negative the ion will reenter region A and will finally exit at
a more positive angle (see Figure 2). This effect limits the
range of a.

As an example, we note that for & = 0° we have Vjp as
defined in the following:
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Figure 3. These are plots of equation (10). The phase angle « is the angle of the gyrovelocity with the x
axis at the boundary between the region of zero electric field gradient (region A) and the finite gradient
region (region B). The parameter o is the corresponding phase angle in region B. It should be noted that
only a relatively narrow range of a is relevant due to the way in which the ions cross the boundary. (a) The

phase angle ag versus « for various values of R,

/€, the ratio of the ion gyrofrequencies in region

A and B, respectively. Note for the tendency of the ions to bunch in the tailward (—X) direction as the
value of the gradient increases. This is ion phase bunching. (b) The phase angle ap versus « for various
values R, = E,/(VB), the ratio of drift speed to gyrovelocity in region A.

Vp=|V— AV, (14)
This is simply the entering ion velocity as seen in the region
B drift frame. As pointed out previously when the associated
drift velocity is sufficiently large, the entering ions will be
perceived as traveling tailward in this drift frame. This is the
case when |Vz/V| > 1 as seen from (12) and (10). Ions
entering region B with zero phase angle will have ag > 90°
if the difference in the drift speeds is greater than the
gyrovelocity in region A.

Elliptical Polarization

Let us for the moment look at the implications of elliptical
polarization in region B. Elliptical polarization implies that
the velocity components satisfy the equation for an ellipse.
From (8) we obtain

(Vi - Vd_x]z [V, = V4]
= (15)

where
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Figure 4. These are plots of equation (13). V is the gyrovelocity in region B. Note that both the drift
velocity and the gyrovelocity can be greater in region B. This energy comes from the radial electrostatic
potential which is sustained by the large-scale plasma flows that create the Harang discontinuity.

w
b = VB 5
Elliptical polarization implies that the gyrovelocity ampli-
tude in the x and y directions are not equal. That is, ion
detectors should measure a higher average kinetic energy in
the +y direction that is R2 times that in the =x direction.
This could provide a way of determining large-scale electric
field gradients through (11).

a=VB

Numerical Methods

Equations (3) were numerically integrated using a fourth-
order Runge-Kutta technique as described by Press et al.
[1986). The ions were initialized in uniform increments of x
over the interval (27/w)(E,/B) some tens of gyroradii in

9

front of the boundary. A sufficient number of phase angles
were sampled in order to obtain reasonable statistics. The total
energy at each integration step was also calculated and com-
pared with the initial total energy. The time step was adjusted
to keep the fractional difference to be less than 5 significant
figures. At each integration step each ion was binned according
to its x position and the appropriate counter incremented by
one. A running total was maintained for each bin which
represented the relative ion number density as a function of x.

Results
Density Striations

We first choose a lower ion energy (200 eV) in order to
highlight the striation effect. Three hundred ions were traced
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Figure 5. This is the relative density of an ensemble of O™

fons as they were numerically traced through regions A and
B. In all cases, E, =1 mV/m except where noted differ-
ently. Positive X points earthward. Note in region A there is
a constant density as expected. The density decreases at the
boundary due to the enhanced earthward drift speed in
region B. Striations form in region B due the phase bunching
effect. The solid line denotes the distance an O™ ion travels
during one period 2#/Q2, which matches the peak separation
very well.

and their positions noted as described above. The solid line
in Figure 5 represents the distance between striation maxima
which is equivalent to the distance that an ion travels in one
gyroperiod in region B. This distance d is defined by

d il R? £ 16
= fe B (16)
In Figure 5, d = 4718 km where in this case R, = 1.93,

E, =1 mV/m, and R, = 0.51. The chosen B field value of
40 nT is consistent with the Tsyganenko [1987] model for L
= 6 and Kp = 4. Note the excellent agreement with the
theoretical estimate for the distance between the density
peaks. This distance is sensitive to the value of the electric
field gradient and can substantially increase for even a
relatively minor steepening of the gradient. The gradient
varies, of course, inversely with the scale size of the electric
field variation, so that there can be no positive correlation of
this scale size with the spacing between density peaks. In
region A we note a constant ion density consistent with a
steady E X B drift. The rapid drop in ion density at the
boundary (labeled (1) in Figure 5) is due to the enhanced drift
velocity in region B. This was checked by numerically
determining the average density in region B and noting that
its ratio to the density in region A was equal to I/Rf,. The
““test’” electrons are drifting at the same (E,/B) speed in
both regions. In order to maintain charge neutrality in a
self-consistent manner in region B there must be a compa-
rable loss of electrons to the ionosphere at the boundary.
This would produce a narrow arc that is the ionospheric
demarcation of the polar boundary between regions A and B.
In geophysical terms we speculate that this poleward arc
(number 1 in Figure 5) is the ionospheric signature of where
the electric fields associated with the HDR start to affect the
O™ ion dynamics in the equatorial plane. The striations,

10
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Figure 6. Same as for the previous figure but with the O
jion energy increased to 1 keV. Note the decrease in the
peak/valley ratio in comparison with Figure 5. The plus and
minus signs denote a possible charge imbalance if field-
aligned electrons cannot fully neutralize the ion density
striations. The arrows denote the resulting electric field
structure. Note the similarity to that expected from
U-shaped field-aligned potential drops.

labeled 2, 3 and 4, could produce muitiple arcs poleward of
the Harang discontinuity if region B is sufficiently extended
and O™ ions are plentiful in the plasma sheet.

We now change the initial gyro-energy. Figure 6 shows the
results for O™ ions with a 1 keV initial energy. The distance
between the density peaks is unchanged in comparison with
Figure 6 (200 eV) but the ratio between the peak height to
valley decreases from R, = 3.6 to 2.1 as the energy
increased. The average density in region B (Figure 6) is
essentially the same for Figure 5. This demonstrates that
phase bunching is less pronounced at higher initial gyrove-
locities as one would expect from the above discussion
regarding Figure 3b.

Finite temperatures also tend to decrease R, as seen in
Figure 7. The ions are sequentially initialized in Ax as
before, but the velocity components are independently cho-
sen according to a Maxwellian distribution. This, no doubt,
contributes to the noise seen in Figure 7. Note that R, = 1.6
in comparison to 2.1 for the monoenergetic case. We also
conclude that the density striations are diminished at higher
ion temperatures but are enhanced by larger electric field
gradients in region B. This increases the difference in drift
speed between regions A and B which is the source of the
striations. A difference in drift speeds implies a difference in
electric field gradients between the two regions and, there-
fore, it is not necessary that the electric field gradient in
region A be zero.

In the present instance where B = 40 nT and E, = 1
mV/m, the equatorial distance between striations varies
between 667 and 4722 km for dE/dx in the range of 0.1-7.0
% 107° V/m?. Using a mapping factor of 0.016 based on the
Tsyganenko [1987] magnetic field model these distances
correspond to 10.7-75 km in the ionosphere.

Finite Boundary Effects

Up to now we have treated the boundary between regions
A and B as a discontinuous change in the electric field
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Figure 7. Same as Figure 6 but with the O™ ions initialized
by a Maxwellian velocity distribution with a temperature of
1 keV. There is slightly more noise in region A due to the
finite number of sampled ions. Also, the ion density peaks
are broader and the peak/valley ratio is further decreased.
The expected currents generated by the density striations
are also shown. The vertical arrows denote field-aligned
currents. See text.

gradient. The effects of a finite boundary region on R, will
now be investigated. This is done by using a smoothing of
the boundary based upon an ‘‘error’’ function. The function
is modified such that in nondimensional units, ¢ = x/(AR,),
it goes to zero at —1.5 and to + 1.0 at +1.5 and is denoted by
f(&. R, is the ion gyroradius as defined in region A. The
boundary thickness T is equal to 3AR.. By scaling the
boundary at different multiples (A) of the ion gyroradius we
can investigate the effect of varying the boundary thickness
(T). The electric field gradient is then defined by

(&),

where (dE/dx), is the constant value in region B. Inside the
boundary where f(£) is changing we calculate the electric
field by integrating (17). The calculations were made with
(dEldx)q = 7 x 107° V/m?. Figure 8 shows the results for
200-eV and 1-keV ions. Each symbol represents a complete
run such as shown in Figure 6 from which R, is estimated.
Note that R, decreases as the boundary thickness is in-
creased. The gyroradius of a 200 eV O™ ion is 205 km and
that of a 1 keV O ion is 458 km in a 40-nT magnetic field.
This means from Figure 8 that if the transition (boundary)
region is less than Rg/3 then 1 keV O ions will strongly
striate. Even if the boundary thickness is of the order 1R,
20% enhancements are possible. We conclude that higher
ion temperatures and finite boundary effects can diminish,
but not eliminate the density striations.

dE
Tx (xy=f

(17)

Discussion

Density striations have been observed in barium releases
when the injection velocity exceeds the expansion speed of
the cloud [Bernhardt et al., 1993). In that case, striations are
spaced by the component of the injection speed perpendic-
ular to B times the ion gyroperiod. These results agree with
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Figure 8. Clearly, the transition between region A and B is
not physically discontinuous as assumed in the analytic
treatment. Therefore we have varied the size of this bound-
ary and parameterized it in terms of the O™ gyroradius R, in
region A. See text for more details. One sees that the
peak/valley ratio R, asymptotically decreases as the bound-
ary is make thicker but it does not disappear. There is a
residual density striation that we believe could support a
field-aligned potential drop.

our work if one replaces the injection speed component by
the enhanced drift speed in region B.

Existence Criteria

We have shown that heavy ions when entering a region
where a positive electric field gradient is present (e.g., near
the Harang discontinuity) may produce density striations
parallel to the y axis. Are the required variations in the
electric field gradients reasonable and how important, if at
all, is this effect for auroral arc structure? In order to answer
the first question we define the conditions for the existence
of significant striations to be when the difference in the x
drift velocity between regions A and B exceeds the thermal
speed V. This is the condition for all the ions to be seen in
the tailward direction from the region B drift frame (ion
phase bunching—See equation (9)). An analytical expression
for this condition is

wz
Ade= ﬁ—]

This leads to a conservative definition of the minimum value
of the required discontinuity in the electric field gradient as
a function of E,, B, and V as

(dE x) w?
— z—
dx min (R” + 1)
The maximum value of the electric field gradient is defined
by the condition Q2 = 0 (equation (2)). It is given by

(dEX)
dx
max

A higher value of E, and/or a lower ion temperature
(larger R,) for a given B value will lower the minimum E

Esz

3 (18a)

e

v (18b)

=MB‘ (19)
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Figure 9.

Ion density striations should exist in the near-Earth magnetosphere under disturbed condi-

tions. The lines represent the minimum gradient required for striations to occur using a dipole magnetic
field. The different lines represent different ion energies as shown in the legend. The horizontal axis is in
units of invariant latitude. The squares and diamonds represent the effect of magnetic field line stretching
for Kp = 4 and 5, respectively, according to the Tsyganenko [1987] model for which an O* ion energy of
10 keV has been used. Clearly, the distortion of the field lines significantly lowers the threshold and will
go even lower if the ion energy decreases and/or E, increases. See text. Here we used E, = 1 mV/m.

field gradient step required to produce significant ion density
striations. Lower values of E, and/or a higher ion tempera-
ture (small>r R,) causes (18b) to asymptotically approach
(19). The int=ral of gradient steps over which striations are
expected is { ' nd by subtracting (18b) from (19). The result
is

R dE, R,w’
M dx R,+1

(20)

We see that the gradient interval is larger and the mini-
mum threshold smaller for a higher cross-tail electric field
and colder ions. This is the geophysical criteria for creating
the density striations. It is interesting to note that Mozer et
al. [1980] measured electric field gradients that satisfied (19).
We refer the reader to Mozer et al. [1980] for a comprehen-
sive treatment of magnetospheric electric fields.

Stretching of Magnetic Field Lines

The curves in Figure 9 represent (18b) plotted as a
function of invariant latitude, A, for a dipole magnetic field at
various incident ion energies and with E;, = 1 mV/m. Finite
energy effects are seen to be quite weak and the required
minimum value of the gradient is about 1 x 1077 V/m? ((1
mV/m)/10 km) at A = 66°. This value appears to be too high
to be physically reasonable. Therefore we maintain that in
the dipole approximation density striations do not occur.
However, if the same calculation is carried out with the
Tsyganenko [1987] model for Kp = 4 (squares), 5 (dia-
monds) we see that the threshold is significantly reduced.
This is due to the stretching of the magnetic field lines during
disturbed periods. The Tsyganenko calculations were car-
ried out with the ion temperature set at 10 keV. Lower ion
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temperatures, enhanced field line stretching, and a higher
value of E, would lower the threshold even further. An
electric field gradient of 1 X 1072 V/m? (1 mV/m)/1000 km)
appears physically obtainable. For example, a 40-nT mag-
netic field reduces the above value for the gradient minimum
t0 9.6 x 10~° V/m?. This leads us to conclude that under
disturbed conditions density striations probably exist.

During the growth phase of a substorm, ionospheric
oxygen seeds the central plasma sheet [Daglis et al., 1990;
Cladis and Francis, 1992] which provides a striation source.
Using data from the equatorial SCATHA satellite, Mullen
and Gussenhoven [1983] note that during periods of high
magnetic activity, the O concentration may increase more
than a factor of 4, replacing H™ as the main constituent in
the near-Earth plasma sheet.

Auroral Arcs

Our model provides a possible magnetospheric driver for
auroral arc formation. The density striations through charge
separation and current divergence can create equatorial
voltage or current sources which can be used as inputs for
arc models [Lysak, 1990; Chiu et al., 1981; Chiu and
Cornwall, 1980].

This returns us to the second question of the introduction
regarding striations and auroral arc structure. We now turn
to Figure 6 and address charge neutrality. The electron
motion is characterized in the x direction by a uniform E,/B
drift which, in the absence of time-dependent or field-aligned
sources, yields a constant electron density as a function of x.
Therefore the ion density variations must be neutralized
either by the generation of very intense electric fields that
demagnetize the electrons and allow them to join the ions or
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else charge neutrality is maintained by electrons moving
parallel to B. Since the latter is far more probable, we expect
that in the regions of ion density enhancements there are
upward flowing electrons, while in the regions of ion deple-
tion we expect downward flowing electrons. It is interesting
to note that if charge neutrality is not strictly obeyed then
small-scale reversed electric field structures consistent with
field-aligned potential drops could develop in the regions of
ion depletion. These smaller-scale variations in the electric
field would be superimposed on the larger-scale gradient.
Larger-scale variations are considered to be much larger
than the O™ gyroradius while smaller-scale variations are on
the same order. This idea is highlighted in Figure 6 by the
plus and minus signs representing the charge imbalance and
the reversed arrows that denote the expected electric fields
resulting from such a charge imbalance. It should be noted
that a much weaker electric field gradient could still produce
small deviations from charge neutrality with measurable
electric fields. In the present case we have assumed that the
electric field gradients are created by large-scale plasma
flows as observed by Heppner and Maynard [1987] and as
modeled by Erickson et al. [1991]. We therefore expect that
the smaller-scale variations can be treated as perturbations.
The test particle approach presented here gives zero-order
results that could lead to a self-consistent description.

For the sake of discussion we will presently assume that
striations do lead to a valid description of periodic auroral arcs
and interpret the results in terms of our earlier work [Rothwell
et al., 1991]. Recall that we developed a two-component circuit
for describing the current wedge representation of an auroral
arc. For consistency it was necessary to close the north-south
ionospheric current in the arc by an earthward inertia current in
the equatorial plane which is given by

dE,
ox

=K,
(3))
_PAEy
m="g3

where p is the mass density and d is the integration height
along the magnetic field in the equatorial plane. Note that the
time-average of (5) also leads to an average inertial current
which is identical to (21) times R Z, Since the particle density
is inversely proportional to the x component of the particle
velocity, we see that the ions have a maximum velocity in
regions of ion depletion and a minimum velocity in regions of
jon enhancement. Electrons drift at a constant speed and
have a number density only slightly different from that of the
ions. In the regions of ion depletion therefore we expect
enhanced earthward currents while near the ion density
peaks we expect tailward currents (see Figure 7). The
divergence of these currents requires field-aligned currents
as shown. There is therefore a close analogy between our
previous finite element circuit model [Rothwell et al., 1991]
and the test particle analysis presented here. Finally, we
note that at the Harang discontinuity itself there is a rapid
electric field reversal that may momentarily trap and sto-
chastically heat and accelerate the O™ ions in the manner
described by Rothwell et al. [1992].

In summary, the nonadiabatic behavior of even cold O™
ions in contrast with the expected adiabatic behavior of H*
and electrons near the HDR could be a source for auroral arc
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structure. The electric field gradient preferentially decouples
the O% ions from the magnetic field, weakening the west-
ward gradient-curvature drift that strongly affects the HY
jons. The O ions then periodically bunch along the direc-
tion of the electric gradient (perpendicular to the Harang
discontinuity) which results in density striations that are
almost parallel to the east-west direction. This would explain
the usual arc elongation in that direction. The O™ ions then
generate an enhanced inertial current that is perpendicular to
the striations. This equatorial current is in the right direction
to close the current wedge as proposed by Rothwell et al.
[1991]. Other features to recommend this approach is its
explicit dependence on the O~ population [Daglis et al.,
1990; Cladis and Francis, 1992] and on the stretching of the
magnetic field lines. Both features are closely connected
with the substorm process.
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The magnetosphere is populated by hot, tenuous plasma. Therefore, it is expected that at times
electric fields will dominate the single ion dynamics which invalidates the usual fluid MHD
description. We have found two such examples which we review in this paper. (1) The effect of a
large scale electric field gradient on the single ion dynamics which leads to density striations and
possible auroral arc formation. (2) Large spatial variations of the electric field on the scale of the ion
gyro radius which causes chaotic untrapping of O* ions to occur.

1. INTRODUCTION

In this paper we review the interplay between micro and meso-
scale phenomena that we have found and highlight the conditions
underwhich an MHD approach is not valid. This is done by
examining single ion dynamics in a spatially varying electric
field. For example, we examined [Rothwell et al. 1994] the
effect of the electric field variation near the equatorial Harang
discontinuity on single ions as they drift earthward from the
magnetotail. We found that under substorm growth phase
conditions single ion trajectories were modified and caused
macroscopic density striations if the electric field gradient is
sufficiently strong. Conservation of the associated inertial
current implied a connection between the striations and auroral
arcs. Similarly if the electric field has a sufficiently large second
derivative in the electric field then the ion gyro orbits become
very distorted with the gyro velocity being highly variable over
a gyro orbit. The problem is analogous to that of a finite

Cross-Scale Coupling in Space Plasmas
Geophysical Monograph 93
Copyright 1995 by the American Geophysical Union

pendulum. Just as a finite pendulum if driven sufficiently hard
will pass from an oscillating mode to a rotating one a gyrating
jon will become unmagnetized if the second derivative of the
electric field is sufficiently large. This can cause heavy ions to
become chaotically untrapped [Rothwell et al., 1995]. In this
paper we briefly review this work with emphasis on the physical
concepts.

2. TWO EXAMPLES OF MULTISCALE PHENOMENA
Constant First Derivative in E,. We begin by looking at

the simple case of a constant electric field gradient. The
equations of motion [Cole 1976] are given by

W, -2 &)V B)
———H x(x yB

dt
1)
Yy ey B (
da M
which can be combined into a single equation

d*. dE

= (w2-Z— )V =0 @
dt? M dx
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Fig. 1. A computer simulation of O ions ExB drifting
towards the earth and encountering an electric field gradient at
x=0. Phase bunching causes density striations to form in the
gradient region which could be a source of multiple auroral arcs.

where we define the gyro-frequency to be

dE
Q=2 L= 3)
M dx

The main effect of a spatial gradient in E_ is to modify the
gyrofrequency. The symbol w denotes the gyrofrequency eB/M.
It is immediately seen that if Q% < 0 then V_ has an exponential
rather than an oscillatory solution. That is, if the electric field
gradient is too steep the ions become locally untrapped. This
effect becomes significant in regions of the magnetosphere where
the magnetic field is weak and the electric field gradient is
strong. One such region is the equatorial Harang discontinuity.
For example, (3) predicts that O" ions will become untrapped in
a 40y magnetic field if dE /dx > 9.6X10®° V/m~.

The next questions to ask relates to what happens when an
ensemble of O ions EXB drift from the magnetotail into a region
of significant earthward (positive) electric field gradient. It has
been noted by Daglis et al. [1991] and others that during active
periods there is an efficient transport of ionospheric O to the
plasma sheet. What effect does this global transport have
interfacing with the mesoscale electric field structure of the
Harang discontinuity? How does this interfacing create micro-
scale structure and do the different processes acting at different
scales reach some form of equilibrium?

Density Striations. Oxygen ions injected into the plasma sheet
drift earthward due to a cross-tail electric field E,. The solution
to (1) with an E; term was reported by Rothwell et al. [1994].
The earthward drift velocity V,, in the region of finite dE /dx
becomes

_ W Ey
i @
so that if dE /dx is positive then V,, > . Earthward drifting

ions that encounter a region of dE,/dx > 0 acquires a higher dnft
velocity than they had outside the region. Before encountering the
E-field gradient the ions are uniformly distributed in phase angle
in the E/B drift frame. Upon encountering the gradient region the
ions acquire a faster drift velocity. The acceleration of the drift
frame imparts a negative velocity component in that frame to
each ion. This causes the ions to bunch in phase in the tailward
direction. They then gyrate as a group. Where the ions have their
turning points in the gradient region, density enhancements or
striations form [Rothwell et al. 1994].

Figure 1 illustrates the effect using a computer simulation.
Monoenergetic 1 keV ions are injected tailward of the gradient
region which begins at x=0. The increase in the ion drift velocity
in the gradient region causes the density n to drop from its
previous value which requires an upward field aligned current
near x=0 to maintain charge quasi-neutrality. The long horizontal
arrow denotes an earthward inertial current J, which is the
continuation of this upward current in the magnetosphere. In this
picture the current J, closes on the earthward side of the Harang
discontinuity to the ionosphere, creating a macroscopic radial
current system between the ionosphere and the equatorial plane.

The presence of density striations modulates the earthward
mertial current J, and is denoted by the shorter arrows in Figure
1. The modulation creates a series of smaller current wedges that
are related to the mutiple arcs which are symbolized by the
upward pointing arrows. Physical insight can by gained by
deriving an expression for J,. We assume a coordinate system
such that positive x is earthward, y points westward and z is

“parallel to B, the magnetic field. We also assume that the number

flux of ions is conserved as they drift earthward. This means that
the earthward ion flux F;in the electric field gradient region is the
same as outside (i.e. F; = N, E /B where N is the ambient ion
number density in the plasma sheet). However, in the gradient
region the ions are drifting faster than the electrons according to
(4). Therefore, the average ion density in the gradient region is
N, /(w*/Q?). Charge neutrality requires that the electron number
density is the same as the ion number density. This can only be
achieved by a magnetic-field-aligned electron flux at the onset of
the gradient region. The electron flux in the gradient region is F =
N,(Q%w")(E,/B). The net electric current is equal to e(F ;-F )
which can by using (3)be written as ‘

®
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Fig.2.  Orbit shapes for negative d?E/dx? and for &, =-7/2. Note that the transition to
open (untrapped) orbits for A4 < -1/8 where A is a dimensionless representation of
&*E/dx? . x, = -4 is a critical point and is located at twice the ion gyro-diameter
corresponding to the d°E/dx’ =0 orbit. Similarly untrapping occurs for &, =+1/2, X, = +4

when A, > +1/8.

The symbol p denotes mass density in the gradient region and p,
refers to the mass density in the gradient-free region. The mass
flux inside the bracket will be constant if the ions are conserved
as they drift earthward. In this case J, varies as B rather than B>.

The principle of quasi-neutrality requires that locally N(x) =
N{X). The electrons have an earthward flux F,= N (X)E,/B where
N,(x) approximates the local number density of the ions which is
spatially dependent due to phase bunching. Satisfaction of the
quasi-neutrality principle requires that electrons are free to move
along magnetic field lines between the ionosphere and
magnetosphere. In other words, the presence of density striations
implies magnetospheric-ionospheric coupling and the formation
of periodic auroral structures. Density striations and the principle
of charge quasi-neutrality lead to perturbations in the earthward
inertial current J, (Figure 1) associated with the gradient region.
Note that in regions of density enhancements the perturbation in
J_is tailward and in regions of density depletion it is earthward.
This requires a downward field-aligned current where the density
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is increasing and an upward field-aligned current where the
density is decreasing. Since upward field-aligned currents are
carried in part by precipitating electrons this is where we locate
the auroral arcs in this model. Reference is made to Rothwell et
al. [1994] for more details. This is an example of how the meso-
scale properties of the electric field modifies the micro-scale
orbital characteristics of the single ions so as to produce
unexpected micro-scale structure that may have geophysical
significance.

For example, periodic arc structures spaced 35 km apart in the
ionosphere correspond to magnetospheric density striations
spaced approximately 2x10° apart at the equator. A simple
calculation shows that the required electric field gradient in the
equatorial plane is 5x10° V/m*. This assumes E, = 1x10° V/m
and B=40nT.

Constant Second Derivative in E,. We now look at how
electric field structure on the scale size of an ion gyroradius can
modify the gyro motion. The effect of a second spatial derivative
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of E, will now be considered. The presence of a constant second
derivative in E, can be examined by expanding the first derivative
about the initial position x, of the ion.

d’E,

dx;(x-xo)

dE, dE,

==} _+ 6
e ®

Then equation (1) can be rewritten as

aw, o dE
X+Q 2 Z(x-x )V =0

dtz o X—M dxz (7)

where Q, is the gyro-frequency as defined in equation (3) with
dE,/dx = dE,/dx|_,. This is to be distinguished from the gyro-
frequency Q which reflects a constant second derivative in E,.
Equation (7) can be easily integrated by noting that V, =dx/dt in
the second and third terms . A subsequent integration is also
trivial after the previous result is multiplied by V.. The final
result is cast into the following form.

dx, 5
(-?E) = A, (xma)(x,;~b )(x,~c ) 3]

where the subscript 'd' refers to dimensionless quantities.

Equation (8) 1s solved in terms of Jacobian Elliptic functions
[Byrd and Friedman 1971]. The key point 1s that the usual
concept of uniform circular gyration about the magnetic field line
is not true in this case. The orbits are highly distorted by the
electric field structure and the orbital speed is highly variable.
Figure2 shows the solutions to (8) for large, negative d°E /dx*.
If the second derivative in E, is sufficiently large the ions can
become locally untrapped. There is a critical point at A, = -1/8,
where A, is proportional to d’E /dx? It is found that the
untrapping criterion is dependent on the initial azimuthal phase
angle of the ion and the sign of the second derivative. This
untrapping criterion will be satisfied for 5 keV O" ions in a 40
nT magnetic field if |d*E/dx?| > >40 (mV/m)/R;%.

3. DISCUSSION AND CONCLUSIONS

Multi-scale phenomena has been shown for the two cases
considered. In the first case a large scale electric field gradient
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was shown to produce a set of nested current systems between
the ionosphere and the magnetosphere. Presently, we are
investigating the self-consistency of the structure shown in
Figure 1. That is, the upward current regions are associated
with field-aligned potential drops. The question is whether the
equatorial electric fields associated with these currents are
sufficiently strong as to scatter the ions and, therebye, destroy
the striations. The result depends on the auroral arc model
used. In the second case small scale electric field structure
strongly affected the orbital dynamics of trapped ions. In both
examples that were considered the unifying idea is that when
(3) becomes small or negative then finite orbit effects become
important. Another important example that depends on this
concept is the stochastic heating of ions [Rothwell et al. 1992].
A negative value of (3) implies that in the x-direction the
ion's increase in momentum due to the electric field gradient 1s
larger than the ion's decrease in momentum due to the
magnetic field. This 1s the physical basis of untrapping.
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Abstract. For an MHD description of a plasma a distinct separation between the macroscopic
and microscopic spatial and temporal scales is assumed. In this paper we solve the particle
dynamics with finite first and second spatial derivatives in the electric field. We find that ( 1)
MHD (ideal and nonideal) becomes invalid for a sufficiently strong constant electric field
gradient perpendicular to the magnetic field; (2) a sufficiently large second derivative in the
electric field can cause heavy ions to become chaotically untrapped; ( 3) for an electric field with
a constant gradient the ion drift velocity is equal to (ExB)/|B[ as long as the orbit-averaged value
of E is used. There are no finite currents associated with the ion drift for such an electric field;
(4) perturbation technique gives a poor approximation to the ion drift velocity even for values of
the second derivative that may well occur in the magnetosphere. Results 1 and 2 provide
necessary criteria for the applicability of magnetospheric MHD models of spatially varying
electric fields. They also predict an asymmetry in the heavy ion fluxes, a feature that could be
useful in inferring magnetospheric electric field structure. We illustrate these results by applica-
tion to the Harang discontinuity. It is found that if the interplanetary magnetic field swings
northward under substorm growth conditions the orbits of the equatorial O* may dramatically
change due to result 2. This effect may contribute to the substorm onset process.

1. Introduction

It has long been recognized that there is a coupling between
the microscopic single-ion dynamics as defined by the ion
gyroradius and macroscopic MHD phenomena. Two obvious
examples are the kinetic Alfvén wave [Hasegawa, 1976; Goertz,
1984] and the ion tearing mode [Galeev and Zelenyi, 1976].
More recently, we showed that the chaotic behavior of single-
jon trajectories may cause macroscopic heating and accelera-
tion as they drift through an auroral arc [Rothwell et al., 1992].
Another important example is the effect of the electric field
variation near the Harang discontinuity on single ions as they
drift earthward from the magnetotail. We found [Rothwell et al.,
1994] that under substorm growth phase conditions, single-ion
trajectories were modified and caused macroscopic density
striations. Current conservation of the associated inertial
current implied a connection between the striations and auroral
arcs.

In this paper we examine single-ion dynamics in a spatially
varying one-dimensional electric field E,(x) which is perpendicu-
lar to a magnetic field B = B,. We analytically solve and
numerically analyze single-ion motion in a magnetic field when

Copyright 1995 by the American Geophysical Union.
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the first and second spatial derivatives of a coexisting electric
field are significant. The single-ion dynamics for a constant one-
component electric field gradient have been previously treated
by Cole [1976]. Cole argued that the ion drift velocity in the -y
direction was greater than -E,(x)/B and therefore a current in that
direction was present. Here we show that for a one-dimensional
electric field there is no drift current. In section 2 we treat the ion
dynamics for a constant electric field gradient. We also show in
section 2 that the ion drift velocity is still equal to -E,(x)/B if the
value of the electric field at the center of the ion gyro-orbit is
used. In sections 3 and 4 we treat the more general case of a
constant second derivative in E,. Exact solutions are found in
terms of Jacobian elliptic functions (JEF). The orbit shape can
become severely distorted by the electric field, and the concept of
a particle uniformly rotating about B in a circular path is no
longer sound. For sufficiently large values of the second deriva-
tive in E, the ions become untrapped. There are therefore
situations in which even a nonideal MHD that treats finite orbit
effects in a perturbative manner is not valid. Also, our results
provide criteria for the applicability of magnetospheric MHD
models for spatially varying electric fields in the magnetosphere.
In section 5 these results are applied to the Harang discontinuity
for the case when the interplanetary magnetic field swings
northward. It is argued that the change in orbital characteristics
of the ions in that part of the Harang where the electric field has
sufficient curvature may contribute to substorm onsets. Con-

_ clusions and a short discussion are contained in section 6.

14,875
19



14,876 ROTHWELL ET AL.: SPATIALLY VARYING ELECTRIC FIELD

2. A Constant First Derivative of E, In that case the ion drift speed equals -(E,(x,)/B)(w*Q?), and a

; o is implied since the electrons were assumed to have
We choose a coordinate system such that the z axis is paralle] D€t current 1s imp !
to the magnetic field B. In addition to B there is an electric field @ drift speed equal to -E,(x;)/B. On the other hand, the orbit

in the x direction with a constant gradient. The equations of aVerage of (1) implies that
motion [Cole, 1976] are given by

<F >
v, e Vya™ - l; @
=" (E_(x@®)+V B
E=Z B (0) +V, B
v, . @ : :
—2=—_ 7, where the angle brackets denote the orbit average. Since one can
a M identify an electron located at E,(x) = <& > for each 1on, (7)

implies zero net current. There is serious disagreement between
the two results. The point is that ¥, does not consist solely of a
gyrating component. The ion at /=0 has an additional velocity in
the -y direction. We have

which can be combined into a single equation:

dZVx ( , e dEx)V 0 @
W — x::
dr? M dx V=¥ sin(e)- E (x) ®)
yo 4 B

The solutions for V,(#) and V(f) are
where «, is the initial phase angle relative to the positive x axis.
Note that the phase angle average of (8) is consistent with (7).
It will now be shown that (8) leads to <E,> = E_(0) for the case
V.=V, cos(Qb)+... of a constant first derivative in E, where x=0 corresponds to the
gyrocenter. Inserting (8) into (6), we find
E(x) . (&)
B ) sin(Q)

...+2(V +
Q
E(x) dE V sin(e)
Vyd_____ _ x o0 (9)
B B dx Q2

? E (x)
VO,V s =) . X

Q B Substituting (8) into (3) and (4), we rewrite (3) and (4) in the

form
(1-cos(Qp) - —;‘%Vm sin(Qf) )
VD=V cos(Qt-e )
gz 9B ” V0=V, d—%Vasin(Qt—a D) 10)
M dx

where X, is the initial position of the 1on and ¥, and V,, arethe where o, and V, are defined by
velocity components at £=0. £ (x,) is the value of E (x(?)) at #=0.
The coordinate origin (x=0) is assumed to be located at the
gyrocenter. Note that E (x,) is different for each initial position
along the trajectory as defined by (3) and (4). In addition, (2) will

V cos(a )=V cos(a)

only describe trapped orbits if Q° > 0 or dE/de<(eM)B* ; V sin(e)=2¥ sin(e,)
otherwise, the ions are exponentially accelerated by the electric Q

field. For 0 < dE Jdx < (e/A)B?, */¥ > 1, and for dE, /dx < 0, tan(aa)=2tan(ao)
©¥/Q?< 1. Equations (3) and (4) represent an elliptical gyration Q

lus a constant drift in the -y direction. The dnift velocity V., is
gjven by Y & . Va: Va [OOS(ao)zd-(E)zsin(ao)Z]]/Z (1 1)
Q
2 E (x
v v -y LD 6

yd~ " yo E v p
This transformation allows us to recast the problem in terms of
a particle with a constant gyration velocity ¥, following an
Cole [1976] assigned a purely gyrating component to the initial ~elliptical path. We will shortly show that ¥, is a constant of the
velocity V), which averaged to zero for Maxwellian distributions. motion. Note that ¥V, =V, (e,) due to the variation of the electro-
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static potential with x. That is, different initial phase angles
correspond to different values of x, and hence different values of
¥, . Equation (10) can be integrated directly to give

t Vag Qt Vasi (
=, 4 — - + — S
x(f)=x, Qsm( o) o »

D=y, +Vt +% V, cos@f - ) -

w
= Vacos@) (12)

Note that the conditions <x> =0 and <y> =V}, imply
that

v, . oV, .
x,= —-a sin(e ) = - > sin(et,)

w w Vo
¥y = Vacosle) = —2eos(@) (13)

Equation (13) describes an ellipse, not a circle, since V, is
constant. This ellipse is equivalent to that described by (12). In
performing a numerical simulation, (13) ensures that ions
initiated at different phase angles will be loaded onto the same
trajectory.

The ellipse described by (10) has a semimajor axis equal to
(wV,)/Q along ¥, and a semiminor axis along ¥, equal to 7.
Therefore the eccentricity € of the ellipse is given by

- ((‘)2_02)1/2
w

e dEyin
=(de) (14)

w

which of course also holds for the orbit in x,y coordinates (12).
The total energy is given by

U,o,:%.M(V,(z)%V o -..

.-eE (x=0)x(t) - Eﬁ @7 =

1,2 1 2 15
M, +EMVyd as)

where (5), (10), and (12) have been used. There is a clear
division between the orbital and drift energies. Since each value
of U, defines a specific ion trajectory, ¥, is constant and V, can
be determined for each value of a, through (11).

We now return to the drift velocity and find that by inserting
(13) into (9), ¥,y now becomes
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dE
-E (x )+—=x
_ dx
- B
__EO 16)
B

which is what we set out to prove. In other words, for V,,,one
must use the value of the electric field at the orbit center, not the
value at the initial ion position. Then the drift velocity is phase
independent and is given by the usual expression. This is true for
each ion, and therefore the particle distributions do not modify
the drift velocity in contrast to the results of Cole {1976].

The MHD approximation is valid when the associated spatial
and temporal scales are much larger than the ion gyroradius and
gyroperiod [Krall and Trivelpiece , 1973). However, in this
section we see that the gyroperiod (equation (5)) and therefore
the spatial extent of the ion trajectory (equation (12)) approach
infinity as dE /dx ~ (e/M)B. For an O" ion in a 40y magnetic
field, (eM)B* = 9.6x10° V/m , which is consistent with
expected values near the equatorial Harang discontinuity.
Therefore the MHD approximation may not be valid near the
Harang discontinuity and inside auroral arcs if the electric field
gradient is sufficiently large. It should be pointed out that Mozer
et al. [1980] have measured electric field gradients that have
exceeded this criterion.

3. A Constant Second Derivative in Ex

We now consider the case where the second derivative of E,
rather than E, or dE,/dx is considered constant over the ion orbit.
Note that we defined z as parallel to B so that the ions' sense of
gyration in terms of d’Eldy’ is well-defined. In the x.y plane ions
gyrate in a clockwise manner. The presence of a constant second
derivative in E, can be examined by expanding the first derivative
about the initial position x, of the ion.

dE, dE,  d’E,
e, o R an

Then (2) can be rewritten as

Ve TE, V= 18
ar e N o

where Q, is the gyrofrequency as defined in (5) with dE, /dx =
dE,Jdx| ., This is to be distinguished from the gyrofrequency Q
which reflects a constant second derivative in E,. Each term in
(18) is a perfect differential of x with respect to time since V, =
dx/dt. Integrating once, we obtain

—+Q 2x-x)=

dt? J”
av.
W e dE a9
dt 2M gx?
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where dV/ /dl|, is given by
awv,  E,
Ry 20
=@ V_ sin(e) @0)

Equations (1) and (8) have been used and E, = E,(x,). Multiply-
ing (19) by dx/dt we can integrate again with the result

dx.s 2

By xS~ x ).

( dt) (e—x [ -L,(xx)
20V sin(e) + A (x ~x )i+

LV 02 cosz(ao)
@n

It we choose the initial position x, to be a turning point, then
dx/dt = 0. This automatically finds one of the roots of the cubic
and reduces the problem of finding the other roots to a quadratic
equation in x-x,. Note that only one of the two roots of the
quadratic can be associated with a physical tumning point since
the other turning point has already been chosen to be a root. If x,
is not identified with one of the turning points then a much more
complicated cubic equation must be solved. We leave the
general solution for future work. In order to compare the present
analysis to the simpler case described in section 2 we set o, =
-7t/2 in (11) and insert the results in (12). We find that the initial
turning point in x is located a distance w’R Q2 from the orbit
center rather than R, = V /w. This is the rationale for normalizing
the x coordinate as shown in (22).
Before solving the quadratic associated with (21) we reduce
(21) to a dimensionless form according to the following nor-
malization:

xQ Vv, ©
xd: > 5 C:_._., wd: —
w?R, (A Q)
Q w?R
T=Q 1t V,=—2 A,=— 4 @2
w o

where the subscript d denotes dimensionless quantities. Note
that w,V, =1 in this set of units. Equation (21) can then be
rewritten as

dx, )
(7{) = (XX, [~(xy—x,)%2

...+Ad(xd—xod)2] (23)

where x,,is the initial location written in dimensionless form and
the sign in front of the 2 is associated with & =+n/2. The roots of
the right-hand side of this equation now depend only on the value
of 4, and are given by
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C1x(1584)"

+Xx
24, .

Ye Q4

The sign inside the radical is chosen consistent with o =%m/2.
Since x,,is defined to be one turning point, only one root of (24)
can correspond to the other turning point. This brackets the
allowed values of x between the relevant roots. The third root
modifies the orbit shape through the JEF as shown below. Equa-
tion (24) has a set of two solutions for each turning point.
Equation (23) can now be written as

dxa' Z_A _ . _ .
(—;’;) - d(xd xod) (xd xd)
(xd _xd-)

=Ad(xd—ad)(xd—bd)(xd—cd) (25

It should be pointed out that the proper mapping of the roots
of (25) to the turning points implies that (25) is never negative
for physical orbits. The roots {x,,x,X,} are defined in terms of
{a, ,b; ¢}, the nomenclature of Byrd and Friedman [1971].
Equation (25) is then in a form that can be solved using JEFs.
For example, we have three distinct solutions for &, = -1t/2 based
on the value of 4;. They are for4,> 0, a,=x,,, b;=x, ;= X,,
c;<xy<b;<a,; (casel);-1/8 < 4,<0,a=x,b,=x; , c;~x4,
cg<b sy <,a ,caseIl; and 4 < -1/8 case IIl. Similar
solutions for &, = +m/2 can be obtained by a simple transforma-
tion as described in the appendix. Case II differs from case I in
that the order of the roots changes as the second derivative in E,
changes from a positive to a negative value. This change cor-
responds to another distinct solution in terms of the JEFs. Case
IIT corresponds to the situation when the only turning point is the
one chosen at the initial position x,. The other two roots are
complex conjugate and therefore not physically accessible. The
particle is untrapped. The solutions are obtained on pages 72, 79,
and 93 of Byrd and Friedman [1971] and are presented in the ap-
pendix.

We now perform a consistency check of our solutions. The
orbit average of (1) immediately gives

<Vx>:0
<H >
>k 6)
4 B

where the angle brackets denote orbit-averaged quantities.
Within every ion orbit there is a point where £, = <E > and,
therefore, an electron that has the same drift speed. A one-
dimensional electric field cannot give rise to inertial currents. In
other words the current density j is

. <Ex>
j:ne(Vyd+ 3 ):O (27)

where n is the ion number density. This result can be used as an
overall consistency check of our analysis.




The average electric field is given by
dE, e
dx ¥

<Ex> = Ea +<(x -xo)>

2> 42
"+<(x > d’E,

—— @8)

which is found by integrating the appropriate expressions as
given by (A1) and (A7) for x-x, and (x-x,)’ . For case I (equation
(A1)) we have

z sion %) _K-B)
<E>=E, Fc b)-jd?[a[l sz]

+ (C—b)2 dzEx

2 dx?

L2K-E)-k*GK-4E), 9)
3k*K ’

[1+.

and for case II (equation (A7)

dE. K-E
dxl,,(sz)
a2 d%E. (2 +kDK-2(1+
+(bz) 2;,[(2 kHK 3(1 kZ)E] 30)
dx 3k‘K

<E>=E +(b-a)

|
We find that (27) is identically zéro for both cases I and II upon
substituting the appropriate expressions for ¥, ,b,c and &* into
(28), (29), and (30). K is the complete elliptical integral of the
first kind while E is the complete elliptical integral of the second
kind.

Any given orbit should be independent of the initial starting
point. For example, we start at one tuming point where the
distance between turning points is defined by the upper/lower
set of signs in (24). One can show by properly defining the
relation between the orbital and drift speeds at the two turning
points that (24) is invariant as to which turning point we initially
choose. In the next section we will examine in detail the proper-
ties of the solutions presented here.

4. Results

Figure 1 is a plot of the right-hand side of (23) as a function of
the dimensionless coordinate x, with the turning point x,, set to
zero. The legend corresponds to various values of A, (the
dimensionless form of d’E,/dx?). Note that regions I-III cor-
respond to cases I-III as described above. Note also that the
turning points associated with «,=-n/2 are plotted only for x,<
0, while the turning points associated with e, =+n/2 are only
plotted for x,> 0. This is consistent with the clockwise gyration
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Figure 1. The right-hand side of (23) plotted in dimensionless
coordinates for e =%m/2 (X4 = 0). Regions I, II, and III cor-
respond to different solutions of (23) (see appendix). The right-
hand side is restricted to e, =+n/2, while the left-hand side is
restricted to &, =-7/2, consistent with the clockwise rotation of the
jon. The legend refers to various values of d°E,/dx* expressed in
terms of the dimensionless quantity A, as defined in (22). This
definition holds for subsequent figures unless specifically stated
otherwise. For 4,> +1/8 (et;=+m/2) or 4, < -1/8 (¢, =-/2) there
is one real root and two complex conjugate roots. This means
there is only one turning point and the corresponding ion is un-

trapped.

of the ions. The nonphysical roots have not been plotted. Con-
sider the solid line that crosses the f{x,) = 0 axis at -2.0 (4, =
0.0). The continuation (not plotted in Figure 1) of this curve for
x,> 0 implies a root at @ =, =+. This causes ¥* ~ 0 from
(A1) and the elliptic functions in this case to reduce to the
trigonometric functions. Therefore the usual sinusoidal
gyromotion is a special limiting case of the third root being at
infinity. Note that the third root does not correspond to a
physical turning point of the orbit. It influences the shape of the
orbit as determined by the JEFs. For case I (¢, =-n/2, 4; ~
d*E Jdx* > 0) and case II (o, =+n/2, 4 ~ &, /d¢ < 0) the orbit.
size decreases as |4,|“"® in the limit of |4, | = +=, & - 1/2.
Similar comments apply to case II (¢ =+mn/2) for negative 4, .
For case I (¢ =+n/2, A, ~ d*Eldx* > 0 and case II (&,=-7/2,
A, ~ d*Eld* < 0) there are closed orbits for, 0<|4 |<1/8
(14]=Q/BwV)) (Figure 1). At |4, | = 1/8 the two roots
merge, and the ion is marginally trapped. At larger absolute
values of 4,the ion does not execute a closed orbit. Note that the
critical point at which untrapping takes place is located at
exactly twice the gyrodiameter of the 4,= 0 orbit as described in
section 2. i.e., |x,-x,| = 4(w/Q)R.. Another interesting feature
of this critical point is that at this location £* - 1 which means
that the gyroperiod is infinitely long when untrapping takes
place since K(k*=1)=w. This critical point is equivalent to a hy-
perbolic fixed point as described, for example, by Rothwell et al.
[1992], and gives rise to chaotic-type behavior. This feature will
be discussed in more detail below.
The JEFs were evaluated using the codes published by Press
et al. [1986). The analytical results presented in section 3 and the
appendix were found to be in precise agreement with a Runge-
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Kutta numerical integration [Press et al., 1986] of (1). The ions
gyrate in a clockwise fashion looking mto the plane of the paper
so that at x, = 0 &, =-1t/2 corresponds to the rightmost tuming
point and o =+n/2 to the lefimost turning point. As previously
shown, the orbit size depends on the value of dE Jdx at the initial
turning point. In (22) we rescaled the x and 7 coordinates in
order to remove this dependence in the x and V, vanables.

Case I (A;>0,a,= -71/2)

Figure 2 shows the ion dynamics in x,,V,, coordinates (V,; =
Q) VJIV), see (22)). (Recall that the subscript d denotes
dimensionless quantities. The quantity V), denotes the drift
velocity in the y direction, while V,is its dimensionless form.)
The legend box denotes the value of 4, corresponding to the
different curves. The large circle is the gyro-orbit corresponding
to A, (d*Eldx®) = 0. Note that as the value of 4 increases the
orbit becomes smaller and asymmetric. In particular, the maxi-
mum orbital velocity becomes progressively smaller which
implies that the drift velocity must become progressively larger.
This 1s easily seen from (A6). For small values of b and ¢, ¥V, ap-
proaches -V -E /B. (E =E (b), the value of the electric field at the
initial ion position.) Therefore the presence of a finite second
derivative in the electric field makes the ion drift velocity
dependent on the ion gyration velocity. As 4, increases in value,
the orbit becomes more elongated in the y direction and shortened
in the x direction reflecting the enhanced drift in the -y direction.
Similar results for case II, @ =+m/2, are easily obtained by setting
A -Ay x~ x4 and y- -y in Figure 2.

Cases [Tand IIl (A, <0, a=-7/2)

In Figure 3 the 4, = 0 case is the solid curve farthest to the
right. As 4, becomes progressively more negative, the orbit size
becomes larger until at 4; = -1/8 (-0.125) the 1on is no longer
trapped. This occurs when the distance between the turning
points along the x axis is equal to 4wV, /Q.%. As mentioned, this
critical pomt is associated with an infinite period and chaotic

1.0

0.5

00.0
00.1
0C.5
01.0
- 02.0
05.0
10.6
20.0

V,./Vo
0.0

~0.5

Xa

Figure 2. The change in orbital shape as the second derivative
of E, becomes more positive for ¢ ,=-n/2. Note that all ions were
initiated at x~0, v, =0, V,,=0 and ', =-1. As d’E /dx* becomes
more positive, the maximum x velocity becomes less and the drift
in the y direction is enhanced. Analogous results hold for
o =+n/2 and d’E/dx* <0.
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Figure 3. Orbit shapes for negative d°E /dx* and for a,=-n/2.
Note that the transition to open (untrapped) orbits for 4, < -1/8.
The critical point x;= -4 is located at twice the ion gyro diameter
corresponding to the d*E,/dx* =0 orbit. Similarly, untrapping
occurs for ¢ =+m/2, and x,= +4 when 4, > +1/8.

effects. Note the radically different orbit shapes for very small
changes in 4, . Chaotic behavior is clearly evident in Figure 4
which is an x, y plot of the ion trajectory. The small egg-shaped
curve (solid line) is the 4,= 0 case. As the second derivative in
E, becomes more negative, the ion drifts progressively faster in
the +y direction. When A, approximates -1/8 the 1on is drifting
parallel to the +y axis at a speed which can be obtained from

(A9).
V‘f:V‘,(‘iﬁz—l)-izg G1)

Y Qz B

Similar comments can be made for cases I and III for e =+mn/2
and A, = +1/8. Note in the latter case, however, that the 1on is
traveling in the -y direction as 4, approximates +1/8. Chaotic

untrapping is phase angle dependent.

We now want to plot ¥, versus ¥, in a nondimensional
manner for cases I and I (a,=-%/2). In this way, physical
insight will be succinctly obtained regarding the drift velocity
by removing the JE /dx l_., dependence. This is done by
transforming to a drift frame that is moving with a velocity
-E.(0)/B where

dE

=

—* 32)
° dx x=x,

2
E(0)=E,- 2R
Q2

Again, E, = E(x = x, ) and E, (0) is the electric field at the
gyrocenter of a particle that starts at x=x, in a constant gradient
electric field. In section 2 we showed (equation (16)) for the
constant gradient case that the particle drift velocity is equal to
-E (0)/B. We transform (A16) and (A17) to the drift frame of the
constant gradient electric field by adding £,(0)/B to both equa-
tions. These equations then become only a function of 4,, the
nondimensional form of the second derivative of E,. In this way
a single set of universal curves can be generated which hold for
all values of dE,/dx.

=X0"*
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Figure 4. The orbit characteristics near the critical point shown
in Figure 3.

This gives for case I (¢,=-1/2)
V,=-1+(b;cp cn?(u) 33)

and for Case II (&, =-%/2) we have

V;=—l+(ad—bd)sn2(u) 34)

. in (33) and (34) is made dimensionless by dividing
through by (W/K2,)* V. The dimensionless quantities a,, b, , and
¢,sare formed by dividing a, b and ¢ by (w/Q,)*R, consistent with
(22). The results are shown in Figure S. Note the onion-shaped
orbits and that the ion drift velocity becomes progressively more
negative as the second derivative of E, becomes more positive.
Solutions for (e =+m/2) are obtained from Figure 5 by the
transformation A~ -4, V,~ -V,y (appendix).

The drift velocities for cases I and II (&, =-7/2) as given by
equations (AG) and (A9) are now renormalized in a similar
fashion. The result is denoted by V.4, and is shown in Figure 6.
The solid line is ¥}, as calculated from the JEF, and the small
squares denote ¥, as obtained by a direct numerical integration
of (1). Here both x; and dE/dx|,.,.; equal zero. The results for
cases I and II (e,=+m/2) are found by the usual transformation.
Therefore a positive value of d°E/dx* causes negative y ion drift,
while a negative value of d*E/dx* causes positive y ion drift in
the chosen drift frame. If (31) is normalized as described above,
one finds that ¥,,,= #3 for a;=£m/2 at the critical points where
A4 ;=118

Near A= 0 the drift speed is a highly nonlinear function of the
second derivative of E,. However, most present treatments [e.g.,
Chen, 1990] use a perturbation expansion that neglects the first
derivative of E,. The usual expression is given by

where V,

,  1RZdE,
¥ 4B dx?

(33)

where the superscript p denotes a perturbation expansion result.
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The renormalized expression for (35) using (22) is V7,;,= -34,/4
which is plotted as a dotted line in Figure 6. (Note that since
dE,/dth implicitly equals zero in (35), Q,=w in carrying out
the renormalization.) V7,,,is seen to be a fairly good approxima-
tion of ¥,,, for small positive values of 4, , but a very poor
approximation for negative values of 4, . The poor agreement is
due to the untrapping of the ions at 4;= -0.125 which is a highly
nonlinear effect and therefore not amenable to perturbation
techniques. For large positive values of 4, the ion drift velocity
approaches -V,(w/Q)? for ions with ¢,=-n/2. For large negative
values of A, and o =+m/2 the ion drift velocity approaches
+V,(w/Q)%. Therefore ion drift along +y is associated with
negative A4,, while ion drift along -y is associated with positive
A,. The ion drift velocity is independent of the gyrovelocity only
in the limit that A, becomes very small.

Limit as A(’E/dx?) - 0

The limit of ¥}, as 4 - 0 can be obtained by looking at the
limits of K and E as &2 -0. The expansion of the elliptic functions
K and E near k*=0 is given by Byrd and Friedman [1971, pp.

298-299]. Inserting these expansions into either (A6) or (A9),
we find the following expression for V.

R2d’E
V.=V, _i(_‘l’_)G_‘__h,_
4Q, B d?

9 R3
2397 T (2F jaeds.

12 1 B2
..+ O(dE Jdx?) (36

where ¥, is the drift velocity in the limit as the second deriva-
tive goes to zero and as given in (16). There are significant
differences between (36) and (35). The coefficient of the linear
term in (36) is 3 times that in (35), and it is evident that the first

']
— Ay = -0.125
W4 — — A, = —0.063
‘‘‘‘‘‘‘ Ay = +0.000
—-= Ay = +1.000
I T Ay = +4.000
Ay = 16.000
2
> N
(=
! 20 -15 -10 -05 00 05 1.0 1.5 20 25

Vya

Figure 5. V,, versus V,, for trapped orbits (e,=-1t/2) including
drift effects. Subscript d denotes dimensionless. Note that the
concept of a particle uniformly gyrating about the magnetic field
is not physically valid if d°EJdx* #0. Results for ¢, =+r/2 are
easily obtained by the transformation 4, ~ -4 and Vi, ~ -V,
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Figure 6. The dimensionless drift velocity in the y direction as
a function of the dimensionless form of o ’E Jdx*. This is for the
0 =7/2 case. The solid line represents the calculated values from
evaluating the Jacobian elliptic functions. The squares are ob-
tained by numerically integrating (1) and determining the drift
velocity by the successive y displacements at constant orbital
phase. The dotted line is the result of first-order perturbation
theory. Because of the presence of the critical point the perturba-

tion result is a very poor approximation. Results for the ¢ =+1/2
are obtained as in Figure 5.

derivative of E, through its modification of the gyrofrequency has
a substantial impact on the drift velocity, a fact which is usually
ignored. We emphasize therefore that (35) should be used with
caution.

Physics of Chaotic Untrapping

Chaotic untrapping of heavy ions occurs when the second
turning point is in a region where the first derivative of the
electric field is more positive. This situation exists for 4,> 1/8
(e, =+m/2) and for 4 ;< -1/8 (¢ ,=-m/2) and 1s analogous to the
results given in section 2. Recall that the orbital speed is not
constant over the orbit path. Using the condition (4,/~+1/8) and
the direct integration of (1) for ¥, (equation ( A5)) we find that
the gyrospeed is zero at the second turning point when un-
trapping occurs. All the kinetic energy at the second turning point
is contained in the drift speed which leads to untrapping (Figure
4). It should be noted that the second turning point is located in
a region where dE/dx > 0 such that Q. would be < 0 if that
turning point was chosen to be x,. The resuits in this section will
now be applied to the magnetosphere.

5. Application to Space Physics

The main application of this work to space physics is to help
delineate those regions of the magnetosphere where ideal and
nonideal MHD break down. Mozer et al. [1980] have, for
example, measured electric field gradients that exceed the
untrapping criterion (section 2). The present work shows that
finite orbit effects are not always slowly varying functions of the
first and second derivatives in the electric field. There are regions
where small changes in these quantities can cause dramatic
changes in orbital trajectories. It is in these regions that
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perturbative techniques, such as those used in nonideal MHD,
are of little use. This is also the case in theories where the ion
drift velocity depends on the second derivative of E. We have
shown that one must perform orbit averaging over the exact orbit
to obtain the right result. In this case, perturbation theory ex-
plicitly fails.

Although we have not solved the particle orbits for all phase
angles, we can still draw some conclusions. Consider a satellite
which can detect the azimuthal phase angle distribution of heavy
ions. The results presented here suggest an east-west asymmetry
in the detected ion fluxes. This asymmetry arises from the particle
loss due to the open orbits. For positive d°E,/dx” and for positive
x pointing earthward we expect higher fluxes from the west than
the east. The reverse is expected if d’E/dx* is negative. The
feasibility of this feature as a tool for defining magnetospheric
electric field structures needs further study.

Large-scale magnetospheric electric field structures are ex-
pected near the Harang discontinuity from the mapping of low-
altitude measurements [Maynard, 1974; Rothwell et al. 1994].
These structures have a region where the second derivative is
finite. It has been well established [e.g., Daglis et al., 1991] that
the O ion population is enhanced in the plasma sheet during
active periods. The question arises whether the condition for
chaotic untrapping of these ions can be satisfied for reasonable
values in the relevant geophysical parameters.

We model the region with a negative second derivative in E,
by a gaussian which, of course, has a nonconstant second
derivative. Figures 7a and 7b show the results of numerically
integrating (1) at different initial locations for a zero cross-tail
electric field (E,, = 0). Figures 7a and 7b should be viewed as
snapshots in time as the normally earthward drifting ions stop
drifting as a result of £, ~ 0. When B 2 40 nT (Figure 7a), the
O" ion orbits are dominated by the magnetic field. On the other
hand, when B drops to 10 nT, some of the ion gyroradii increase
dramatically (Figure 7b) consistent with Figure 3. The presence
of the second derivative in E, becomes important.

°
+
dap o
5 kev 5 mv/m
B = 40 nT
©
1
o
i
Pes -4 -3 -2 -1 0 i 2 3

X/Rg

Figure 7a. The region near the Harang discontinuity partly
replaced by a Gaussian-shaped electric field profile. We assume
that the cross-tail electric field E,, is zero due to the interplane-
tary magnetic field swinging northward, and the orbits shown are
executed by the ions at different x locations. Note that if B=40
nT, the orbital distortion is insignificant.
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Figure 7b. Same as Figure 7a except B=10 nT. Note that there
are now some ions whose orbits become much larger than
expected by weakening the B field. In fact, "bow tie" shaped
orbits, such as that shown in the upper left-hand corner, approach
the critical point described in the text and have very long periods.
The Gaussian-shaped electric field is also shown with the bow tie
to show where these orbits are most likely to occur.

At the Gaussian peak (where Q, = @) the condition for
untrapping according to our analysis is

dE, _ AEMAD) 3 e B2
kz x=0 RE? - S M R‘. (37)

where R;=6.37x10° m. This condition is not satisfied for Figure
7a but is satisfied for Figure 7b consistent with the right-hand
side of (37) varying as B*.

Not only do the jon gyroradii increase, but the gyroperiods in-
crease as well from the above analysis. For example, in the upper
lefi-hand portion of Figure 7b we show a specific ion orbit that
is close to being split. We plot the "bowtie” shape of the ion orbit

i on the Gaussian structure of the electric field. This
orbit was obtained by numerical integration of (1). Note that it
approximates the critical orbits shown in Figure 3. For the latter
case it was pointed out that at the critical point the orbit period
approached infinity. For the bowtie shaped orbit shown, the orbit
period is 2.6 times the normal gyroperiod (27/w). This indicates
that O ions can shift resonance and absorb energy from a broad
spectrum of lower-frequency waves as the magnetic field lines
stretch. The absorption of Pi 2 pulsations by the magnetospheric
O" ions, for example, could lead to ion heating and eventual
untrapping. Similar arguments hold in the presence of a field
line resonance [Samson et al., 1992]. Therefore it is quite
possible that the finite orbit effects determined here play a role in
the substorm process.

6. Conclusions and Discussion

In MHD it is assumed that a distinct separation between the
macroscopic and microscopic spatial and temporal scales exists.
In this paper we examined particle dynamics with finite first and
second spatial derivatives in the electric field. We find that (1)
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even nonideal MHD will be invalid even for the simple case of
a constant electric field gradient perpendicular to a magnetic
field if dE Jdx > eB*/M and that (2) a sufficiently large second
derivative in the electric field > | (3eB?/(8MR,)| can cause heavy
jons to become chaotically untrapped. The first condition will be
satisfied for O ions in a 40 nT magnetic field if dE,/dx exceeds
1x10°® V/m? The second condition will be satisfied for 5 keV o
jons in a 40 nT magnetic field if |d*EJdx*| 2 3.4x10°° V/m®. It
is suggested that large-scale magnetospheric models be modified
to flag those portions of the magnetosphere where conditions (1)
and (2) are satisfied. It is in these regions that finite orbit effects
have to be carefully investigated. One such region is the Harang
discontinuity.

An important conclusion of this work is that the presence of a
finite dE /b could create an asymmetry in the heavy ion fluxes.
The heavy ions such as O* might therefore be useful as a probe
of the large-scale electric field structure in the magnetosphere.
More research is needed to ascertain the practicality of this
suggestion.

7. Appendix

The interested reader is referred to Byrd and Friedman [1971]
and Cayley [1961] for more details about elliptic functions. We
will now solve (25) for the three cases.

Initial Phase Angle Equals -7/2 : Casel

For this case A;> 0, a; = X, b=X,,C4=Xa,C4<Xs< bs<
a, . The solution is given by [Byrd and Friedman, 1971, p.72].
In dimensional units the solution is

x=c+(b-c)sn’(u)
g2=bc
a-c

=9£t_ +K (AD

Equation (A1) is a solution such that ¥=0 corresponds to turning
point ¢ (¢ <b, sn(0)=0). By adding K the =0 particle position is
at turning point b (sn(K)=1) consistent with our original as-
sumption. The derivative of (A1) with respect to ¢ yields the fol-
lowing equation:

(=i ™) ) dn*) a2)

Equation (A1) can be used to construct the following relation-
ships.

(x-¢) = (b-c) sn*)
(b-x) = (b-c) en*()

(@-x) = &9 4, 2(u) (A3)
k2

Equation (A3) follows from the definition of ¥ (Al) and the
identities sn2(u)+cn*u)=1 and k *sn Yu)+dn {u)=1. The sub-
stitution of (A3) into (A2) will yield an expression equivalent to
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(25) if the coefficient of the x* term is the same. This automati- The particle is not trapped. We take a as our initial position and
cally gives us an expression for the generalized frequency Q asa  consider b and c to be the complex roots. The solution is given by

function of the second derivative in E,. Byrd and Friedman [1971, p.93].
kzgz _A bl :b+c 012:' (b-C)z
= 2 4
b-c 5
2 Al -b +a
Q*=A4(a-c) Y2=(6, ~a+a? PR 21
Q2=[Q+8wAV]' (Ad) Y
cn(u)= ayx (A10)

a+y-x
The gyroperiod by definition is 7, = 4 K/Q, where K=K(k?) the
complete elliptic integral of the first kind. Note thatas 4 ~ 0, k2
-0,Q-0Q,and T, -2 7/, In terms of the problem at hand these parameters take the
Now we calculate the drift velocity. From the second equation following form.
of (1) we have

Q: , 8l4|wV, -Q}
bl =aq+—— al —
V.=V, -o(x-b) 24 44 22
20V 1 -
V.=V _ +w (b—c) an(ll) AS 'Yz: o k2=_ 1+_____]
o 3 4| 2 BoV ]

The symbol V,, denotes the initial velocity taken at point x, =b.

The orbit average of (A5) is a-x =y L ren@)

(1 -cn(@) (Al1D)
E (b) K

- P X — - ~E_
Vyd- v, 2 o c)(sz 1) (A6)

Note that the #=0 point corresponds to x =-« and that x,=a (the

where (8) has been used with ¢, =m/2. K and E are the complete 1al ion position) corresponds to #=2K where cn=-1 (Figure 3).
elliptic integrals of the first and second kind. This fact is important in carrying out the numerical computations.
The frequency Q in case I is given by

Case II
For this case -1/8 < 4,<0,a=x,, b,=x, , c;=x4, c;<b,<

x; <a,; The solution is given by Byrd and Friedman [1971,
p-79].

Q=[20]j4|V " (Al12)

At 4=-Q */(8wV) both (A12) and (A8) reduce to Q =Q /2'2,
The corresponding expressions for the x component of the

x=a - (a-b)sn’w) velocity (V, = dx/df) for the three cases are as follows:
§2-9-b A7) Case |
a-c V. =(b-c) Q, sn(u) cn(u) dn(u) (A13)
the gyrofrequency in dimensional form is found to be Case II
, Q@840 V)2 V.=~ (a-b) Qy sn(u) en(u) dn(w) (A14)
= > 48
Case III
Note that both (A8) and (A4) go to Q_ as 4 goes to zero from 2yQ,,
both negative and positive values, respectively. The drift velocity Ve= (d-cn@)? sn(u) dn(u) (A15)
is again calculated as before except that for this case, the =0
point 1s at turning point a.
The subscript on Q is to alert the reader that the expression for
E K-E) each case must be used.
ViV, ——-wb-a)-———-= (A9) The y component of the velocity for the three cases are the
” B kK following: »
Case III Case I, the imitial location is at turning point b.
In this case 4, < -1/8 which makes the roots shown in (24) to V=-V —ﬂﬂo(b—c) enu (A16)

y

be complex conjugate and the corresponding orbits not closed.
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Case 1L the initial location is at turning point a.

(Al17)

E, 2
Vy: —Vo——B- +w (@a-b)sn“u

Case 1L the initial location is at turning point @ and » ~ 2K-+u.

E
Ve, - So oy L) @Al18)
Y B (1 -cnu)
Initial Phase Angle Equals +7/2

Tt should be noted that another class of solutions exist for
which &, = +7/2. In that case, (24) becomes

L lxa84)” (A19)
d —2‘4—4- — d
such that the relation
&g~ XD adeo--mn =
dt Adoo=-n/2 (AZO)

- (O ~ XDl dgonr

holds. Equation (A20) states that by reversing the direction of
the initial velocity and the sign of the second derivative of the
electric field the roots of the cubic are reflected about x,, the
initial position of particle (also one of the roots). One then orders
the roots as a >b>c according to the nomenclature of Byrd and
Friedman [1971). After reflection about x,, case I maps into case
11 and vice versa (Figure 1).

This has been verified by numerical integration of (1). Case 11
remains essentially invariant under (A20). The results are the
same as (A11) if one replaces a-x by x-a and sets =0 at x =+
The key point, however, is that the complex roots (open orbits)
oceur for positive 4, >+1/8 (&, =+mn/2) rather than for negative
A;<-1/8 (¢, = -n/2). This can produce an asymmetry in the
heavy ion fluxes which depends on the sign of d*E jdxc. The
solutions obtained above for &, = -7t/2 also hold for the class of
orbits for which e, = +1/2 and therefore will not be repeated in
detail.
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Test particle motion in the cyclotron resonance regime
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Test particles moving in the field of an electromagnetic wave propagating in a background
magnetic field can gain significant energy when the wave parameters and particle energy are
such that the cyclotron resonance condition is satisfied. Central to the acceleration process and
Jong time scale periodic behavior is the coherent accumulation over many cyclotron orbits of a
small change in energy during each orbit, a result of the circularly polarized component of the

wave electric field. Also important is the small change in the relative wave phase during each
orbit resulting from relativistic variations of the cyclotron frequency and wave-induced
streaming along the background magnetic field. The physical mechanisms underlying
cyclotron resonance acceleration are explored using a set of heuristic mapping equations (the
PMAP) describing changes in the particle momentum and relative wave phase. More accurate
(but less transparent) descriptions of the particle motion are pursued in the context of orbit-
averaged Hamiltonian theory. A discrete set of mapping equations for the slowly varying
canonical action and angle are derived (the QMAP) but are found to generate inaccurate
solutions in certain regions of phase space when the resonance number / is such that |/ | = 1
and the particles are initially cold. These difficulties are avoided by constructing a continuous
time orbit-averaged Hamiltonian and solving the resultant canonical equations of motion.
Assuming the momentum is small relative to mc (where m is the particle mass and ¢ is the
speed of light), details of the distribution of particle trajectories in the action-angle phase space
for |/| = 1and |/ | = 2 are presented and criteria for the existence of orbits oscillatory in

angle are derived.

1. INTRODUCTION

When constructing a kinetic—theoretic description of
the interaction between an electromagnetic wave and a mag-
netized plasma, it is important to know the trajectory of test
particles in the presence of the electromagnetic wave and
background magnetic field. A particularly interesting re-
gime of wave—test particle interaction occurs when the wave
frequency o and the particle momentum satisfy the cyclo-
tron resonance condition,

w—kuv —|[1|Q=0, (n
where () is the cyclotron frequency, / is the resonance num-
ber, and &, and v, are the wave vector and particle velocity,
respectively, in the direction of the background magnetic
field By = B,e,. In the cyclotron resonance regime, it is pos-
sible for test particles to achieve kinetic energies far in excess
of the “quiver energy”’ on time scales of many wave periods,
even for relatively small wave amplitudes.'”” We define the
quiver energy as the maximum energy achieved by a test
particle in an electromagnetic wave without a background
magnetic field.

In the work of Ginet and Heinemann® (hereafter Paper
1), a Hamiltonian pseudopotential (HPP) theory was devel-
oped and used to predict the maximum kinetic energy U,
(normalized to the rest mass energy) and acceleration time
7, (normalized to the wave period) resulting from the cyclo-
tron resonance acceleration process in the limit of small
wave amplitude. Although the HPP theory proves to be a
useful predictive tool, as demonstrated by the extensive com-
parison of HPP predictions with those obtained from nu-
merical solutions of the full equations of motion given in

Paper I, there are limitations. The HPP theory does not pre-
dict any details of the particle trajectory other than the tem-
poral dependence of the kinetic energy and does not provide
much physical insight into how the acceleration process ac-
tually works.

This paper addresses the details of the cyclotron reso-
nance interaction process that are not covered by the HPP
theory. As in Paper I, we restrict ourselves to the regime of
small wave amplitude so that particles are not trapped in the
troughs of a wave and chaotic motion resulting from over-
lapping resonances does not occur. In Sec. I, we discuss the
physical mechanism underlying the acceleration process in
the context of a set of pedagogical mapping equations that
describes the change in particle momentum and wave phase
from one cyclotron orbit to the next. More accurate (but less
transparent) methods for computing details of the cyclotron
orbit-averaged particle trajectory based on Hamiltonian the-
ory are presented in Sec. ITI. At the end of Sec. I1I, we study
in some detail the distribution of particle trajectories in
phase space when the momentum is small [|p|/(mc) €1]. A
summary of the entire paper is contained in Sec. IV.

Il. THE PHYSICAL MECHANISM

To better understand the physical mechanism responsi-
ble for the resonance acceleration process, we develop in this
section a mapping of particle momentum and phase from
one cyclotron orbit to another. The pedagogical map
(PMAP) will be derived from the equations of motion by
using estimates of the particle trajectory that are characteris-
tic of the true trajectory yet simple enough to allow us to
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piece together the details of the acceleration mechanism. Fo-
cusing on the small momentum regime, a reduced version of
the PMAP will be obtained that depends only on the perpen-
dicular momentum and relative wave phase. This reduced
map will then guide our extended discussion of the accelera-
tion mechanism. For notational convenience, we assume a
negatively charged particle in our discussion, though all of
the analysis applies equally well to positively charged parti-
cles given appropriate sign changes in the trajectory and
wave polarizations.

A. Derivation of the pedagogical map

The equations of motion for the momentum p and posi-
tion x of a particle of charge g and mass m in a Cartesian
coordinate system (x,y,z) can be written as

55=q@¢+3xa%+Bwﬂ, )
dt c

dx

ax _y, 3
dt v ()

where p = ymv, ¥ =1 + |p|*/(mc)?, and B, is the back-
ground magnetic field B, = Bye,. The plane wave electric
and magnetic fields are taken to be

E, = E, cos (kx — wt)e,

— E, sin(kx — wt)e, — E; cos(kx — wr)e,,
4)

B, = B, sin(kx — wt)e,

+ B, cos(k'x — wt)e, — B; sin(kx — wt)e,,
(5)

where o is the wave frequency and k = ke, + k.e, is the
wave vector in a coordinate system where k, = 0 with no
loss of generality. The sign convention has been chosen so
that if all the wave components are positive then the wave is
right-hand circularly polarized. Using the plane wave solu-
tion to Faraday’s law,

B, = (c/w)kXE,, (6)

the components of the wave magnetic field can be written in
terms of the components of the wave electric field,

B, =1.E,, (7
B, =n.E; +1,.E, (8)
By =1.E,, )

where 7, = ck,/w, 1, = ck,/w, and the index of refraction
7 is defined as 7 = c|k|/w.

The wave electric field amplitudes can be expressed as
dimensionless quantities €;, where

€, = |q|E;/mco, i=1273,.. (10)
The assumption that €< 1, where € = max (€,,6,,€5), de-
fines the small wave amplitude approximation. In this limit,
the quiver energy is proportional to € (cf. Appendix A of
Paper I).

Numerical solutions of the full equations of motion in
the small wave amplitude limit show that the particle motion
in the plane perpendicular to B, can be viewed as cyclotron
motion with a slowly varying cyclotron radius p and perpen-
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dicular momentum p, = /p2 + p; (e.g., Fig. 2 of Paper I).
Thus we are motivated to model the system as a sequence of
discrete cyclotron orbits in the perpendicular plane with
streaming parallel to the field (i.e., v, is a constant) during
each orbit. The dynamics can then be reduced to a map that
gives the momentum and position of the particleata particu-
Jar phase of the cyclotron orbit in terms of the momentum
and position exactly one orbit earlier. We outline the deriva-
tion of this pedagogical map (PMAP) below.

Assume that a particle undergoes cyclotron motion in
the perpendicular plane and streaming motion parallel to B,
with a constant perpendicular and parallel momentum
(PinsPwn) between times z, and £, =1, + 27/Q,,
n=0,1,2,... For t,<t<t,_,, the orbits for a negatively
charged particle can be written as

p. =p.,.{sin[Q,(t—1,)]e, —cos[Q,(—1,)]e,},

(11)
Pz = Pons (12)
x= —p,cos[Q(t—1,)], (13)
y=Y—p,sin[Q(z—1,)], (14)
z2=2, +v,(t—1,), (15)

where p, = v,,/Q,, Vi, =P,/ (Va)s Vs = Po/ (V)
and the relativistic cyclotron frequency is defined as

Q, = |q|Bo/y,mC =0V (16)

with w, the nonrelativistic cyclotron frequency. In Fig. 1,
these orbits are plotted in various slices of (x,p) phase space.
Since the guiding center in x is a constant of the motion
(Paper 1), we have set it equal to zero without any loss of
generality. We have also arbitrarily set the y guiding center ¥
equal to zero for illustrative purposes in Fig. 1. The value of
Y, although not constant, is irrelevant since there is no y
dependence in the problem.

At time 7, , ,, the particle momentum, z position, and
cyclotron radius are jumped (Fig. 1) by an amount that can
be computed by integrating the equations of motion between
t, and z, , ,, assuming that the wave field is small enough
that the particle motion can be reasonably approximated by
a cyclotron orbit with streaming parallel to the background
field. The z position variable can be replaced by the relative
wave phase variable ¥, which we define to be

¥ =k,z— ot (17)

Noting that the jump in the x position can be computed from
the jump in p, using the definition of the cyclotron radius p,
the equations of motion necessary to compute the jump val-
ues can be reduced to three,

dt’ 2 .

X cos((mﬂn +w—k,v,)t’ LT ¢n)

2
Uzn
X[(E1 +E2 - B (Bl +B2))Jm+1(kxpn)
+ (E1 —E, — Uz_" (B, — B, ))Jm_l(kxp,,)], (18)
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Ot a=t,+20/Q2,
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(a)
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A
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(b}
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pzn*1-_ Ap {Q
o p— 1\
< > - < > > - <
K,
; >
zn Zn¢1 Z

FIG. 1. Phase space trajectories in (a) the x-y plane, (b) the p,-p, plane,
and (c) the z-p. plane, which are used for computing the PMAP. The parti-
cle begins at 7, (labeled with a box), completes one orbit, and then is
jumped as indicated to begin another orbit at 7, , , (labeled with a circle).
Alsoshownin (a) and (b) are the components of the corotating wave elec-
tric field (solid arrows) and magnetic field (dotted arrows) at various
points in the orbit for a wave with w = 2w, ¢¥,(mod 27) =0, and
|E. | = | B |- Orientations of the paralle] wave electric field (solid arrow)
and magnetic field (dashed arrow) at points along the trajectory are shown
in (c). Bold face arrows correspond to components of the wave vector k.
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mi

dp.
p: _ | cos((mﬂ,, +a)—kzvz,,)z’+7—z//,,)

dr 2 .=
U n
><<2E3Jm(kxpn)+ : [(B, +B,), . (k.,p,)
— (B, — B, )Jm_l(kxp,,)]>, (19)
ﬂ:kzvzn — w, (20)
dt’

wheret' =t — 1, and J,, represents a Bessel function of in-
teger order m. These modified equations have been derived
from the Cartesian equations of motion [Egs. (2) and (3)]
using the definition of p, , the explicit form for the wave fields
[Egs. (4) and (5)], and the approximate trajectories [Egs.
(11)—(15)] with the appropriate Bessel function expan-
sion.® Making the cyclotron resonance approximation [Eq.
(1)] with / < O for negatively charged particles, the modified
equations of motion [Egs. (18)—(20)] can be integrated
over the interval ¢ = [0,27/(}, ] to yield

(= D" g|7 ( Iliﬁ)
Ap,, =———F—cos|¥, + ——
P Q >
pln
X[(Ex +E, — (B, +BZ)>J1[—](kxpn)
V.mc
pln
+(E1 —E, - (‘BZ_BI))JUJ+1(kxpn)]’
Yamce
(21)
Ap . (_ 1)\I[+1|qlﬂ.
zn Q"
K
Xcos| ¥, +'T —2E;J (kp,)
p.!.n
+——[(B, +B;)J; -1 (kep,)
y.mc
+ (B, — B, )J|1\+ 1 (kxpn)]) (22)
Ay, =27 (k.p.,/mo, —w/Q,). (23)

The PMAP is now completely specified: given (p,,,,p.,,¥,)
at time ¢, the corresponding quantities at z, , ; are given by

Pins1 =Pin + AP (24)
Pznvn =Pz + Apzn’ (25)
¢n+l =¢n +A¢n5 (26)

using Egs. (21)-(23) for the jump values.

The PMAP will prove to be a useful pedagogical tool for
understanding the resonance acceleration process. How-
ever, it is not a good computational tool for accurately pre-
dicting a particle trajectory over any long period of time.
This is largely because the map is not area-preserving in
phase space and hence not time-reversal invariant, though
the true equations of motion are derivable from a Hamilto-
nian. After many iterations, the phase space trajectories of
the PMAP solutions will drift away from the trajectories of
the true solutions.

The PMAP also has difficulties in predicting the initial

G. P. Ginetand J. M. Albert 29396



phase and initial momentum dependence of the motion, at
least when the initial energy is less than or equal to the quiver
energy. Our assumption in deriving the PMAP that the par-
ticle orbit differs only slightly from a cyclotron orbit could
break down when the momentum is at the quiver energy
level [p/(mc)<O(e)]. If the particle does not complete a
reasonable approximation to a cyclotron orbit in the time
interval of an unperturbed cyclotron period, then the change
in both p,,, and p,, will not necessarily be as dictated by the
PMAP and could be of O(¢). This will certainly be the case
for the first cyclotron period when starting from cold initial
conditions.

In light of these problems, the reader might wonder how
we can be confident that the PMAP will be at all useful in
understanding the acceleration process. We acquired our
confidence from analysis with the PMAP, which yielded the
kinetic energy and oscillation period scaling laws for the
7, # 1 regime derived in Paper I to within a constant factor
of order unity. Furthermore, analysis in the limit of parallel
propagation (k = ke, ) with the PMAP can reproduce pre-
cisely the asymptotic scaling of energy as a function of time
derived from the exact solution of Roberts and Buchsbaum.
The derivations of the 7, # 1 scaling laws from the PMAP
are given in the Appendix.

B. The small momentum limit of the PMAP

The PMAP can be made simpler by assuming that the
momentum will be relatively small [[p,|/(mc)
<1l,n=1,2,3...], though perhaps much larger than O(¢).
Having the advantage of knowing what maximum energies
are possible (Paper I) we can expect this to be a reasonable
approximation in all parameter regimes excepting the case
when 7, = 1. Even when 7, = 1, the small momentum limit
of the PMAP will be useful in illustrating how cold initial
particles are accelerated through the small momentum re-
gime to eventually achieve energies where |pl/(mc) ~O0(1).

Recalling that k,.p, = k.p,,/(me.), the Bessel func-
tions in the full PMAP [Egs. (21)-(23)] can be approxi-
mated as’

J, (k )~—-1—(1; i p*")m (27)
1 \KxPn ~21”F(|l|+1) x w, me

when |/| > 1.If |/ | = O,thenJ;; =~ 1. Expanding the relativis-
tic gamma factor and the cyclotron frequency we obtain

Vo= 1+ pi./2m*c + pl,/2m*c, (28)
Q, =w. (1 —p,/2m*c — pl,/2m*c?), (29)

and, after some manipulation, we find that to lowest order in
Ip|/ (mc) the jump values for the PMAP become

Ap,, =dy (E, + E,) cos(¥, + |1|7/2) (p,,/me)!! 1,

(30)
Ap., =d; (—n.E; +B, +B,)
xcos(¥, + |1|7/2) (pr./me)V] (31)
2 2
A¢n=_zﬁil|(1+ Pin B _ zpz"), (32)
2m*c*  2mc? mc

where d; = |g|7/w,. and
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d; = [(= D" glm/e 2" T ]

X [ (@/0,) ] 7, (33)

for|/|>1.

Further simplification is possible by noting a convenient
relation that follows from the plane wave solution of Far-
aday’s law [Egs. (7)-(9)],

—1,Ey + B, + B, =1,(E, + E,). (34)

Using this polarization relation, the equation for Ap,, [Eq.
(31)] can be rewritten as

Ap., =dm.(E, + E;)cos(¥, + |/ |7/2) (p1n/me)".
(35)

Comparing this expression for Ap,, with the mapping equa-
tion for Ap,, [Eq. (30)], we find

pi Apln ____Apzn

*me me mec
Considering a sequence of orbits, we can sum Eq. (36), be-

ginning at n = 0, to obtain
( Pl Pl )_pm _ Po
* me  mc

(36)

(37)

2m*c*  2m*c?
where we have assumed p,, Ap,, =Ap?,/2. This relation is
the small wave amplitude, small momentum approximation
to an exact constant of the motion [cf. Eq. (15) of Paper I].
Using the reduced constant of the motion [Eq. (37)] to
replace p,, in the phase jump equation, we discover to lowest
order
Pin
2m*c?

Ay, = —27r|l|(1+(1—?7§)

Po . Pl )
-, =47 , (38)
K mc K 2m*c?

where the quadratic term in p,, has been dropped since it is
much smaller than the term linear in p,,. The normalized
kinetic energy U, = ¥, — 1 can also be approximated using
the small momentum expansion [Eq. (28)] and the reduced
constant of the motion [Eq. (37)]. We obtain to lowest or-
derin e,

U, = p?,/2m*c + ply/2m’c’. (39)
Note that the change in kinetic energy is proportional to the
change in perpendicular momentum AU, ~p,,,Ap,,. Thus a
discussion of the physical mechanism responsible for the
change in momentum will be equally applicable to the
change in kinetic energy.

To summarize, the PMAP reduces to two jump equa-
tions in the small momentum limit: one for Ay, [Eq. (38)]
and another for Ap,,, [Eq. (30)]. Values of p,, are obtained
from the reduced constant of the motion [Eq. (37)]. The
approximation of small momentum will be valid for small
wave amplitudes except when 7, = 1, where, after accelera-
tion has taken place, p,,/(mc) ~0(1). We remark that
when k, =0, the full version of the PMAP [Egs. (21)-
(23) ] isidentical to that given in Egs. (30) and (32) regard-
less of the value of |p|/(mc).
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~ C. Discussion of the physical mechanism

Test particles can achieve kinetic energies far in excess
of the quiver energy, on times scales of many cyclotron or-
bits, by coherently accumulating the relatively small
changes in Kinetic energy that occur during each orbit. The
degree to which a particle will gain or lose energy each orbit
depends on the value of the relative wave phase, which will
vary from orbit to orbit as a function of the energy. In this
section, using the PMARP as a guide, we probe the physical
effects underlying the change in energy and phase during
each cyclotron orbit and how these effects act in concert to
produce the long time scale acceleration mechanism. Our
discussion will focus on the regime of small momentum de-
scribable by the version of the PMAP given in Egs. (30) and
(38).

1. The change in energy

The normalized kinetic energy U of a particle changes in
an electromagnetic field according to the relation

av_qE
dt  mc

Our study of the variation of kinetic energy becomes a study
of how the particle velocity “lines up with” the wave electric
field during the course of a cyclotron orbit. Since the change
in kinetic energy AU, is proportional to the change in per-
pendicular momentum Ap,, [Eq. (39)] in the small mo-
mentum limit, we can use the PMAP expression for Ap,,, to
illustrate the processes responsible for AU,,.

(40)

Examining the expression for Ap,, [Eq. (30)], we see
that a necessary condition for acceleration is E, + E, 0.
The reason for this becomes more clear when the wave elec-
tric field [Eq. (4)] is written in the following manner:

E, = [(E, +E,)/2][cos(kx —wi)e,
—sin(kx —wt)e, |
+ [(E, —E,)/2] [cos(kx — wt)e,
-+ sin(k-x—a)t)ey]

— E; cos(k-x — wt)e.. (41)
The term proportional to E, 4 E, represents the electric
field component in the plane perpendicular to B, that ro-
tates about B, in the same sense as the particle cyclotron
motion. Not surprisingly, it is this component of the electric
field (which we term the ‘“corotating component” and de-
note as E,) that dictates the energy transfer between the
wave and particle via the change in p,,. The corotating wave
magnetic field B, can be defined in a similar manner with an
amplitude

(B, +B,)/2=[n.(E, +E,) +1.E;]/2

[Eq. (34)].

The nonzero Ap,, arising from the corotating compo-
nent of the electric field is a result of either of two effects: the
corotation effect or the Doppler effect. If w=w,, so that
|1 | = 1 satisfies the resonance condition [Eq. (1) ], itis the
corotation effect that dominates as follows. When the wave
frequency is within O(¢€) of the cyclotron frequency the cor-
otation angle &, defined as the angle between p, and E_,
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(42)

remains relatively constant during the entire orbit. If the
corotating electric field component E_ is nonzero, then the
integral of p, *E_ will be nonzero and the particle will interact
with the wave either gaining or losing or energy depending
on the value of the corotation angle. Though relatively con-
stant during one orbit, 8 will vary slightly from orbit to orbit
and this slow variation will prove to be a major factor in the
acceleration process. We will demonstrate below that & is
related to the PMAP phase variable ¢, in a simple manner.

Ifo=|!|w, suchthat |/ | > 1satisfies the cold particle
resonance condition, it is the Doppler effect that determines
Ap, .. The corotating component of the electric field does not
maintain a relatively constant angle with respect to p, but
rotates through an angle of roughly 2#(|/| — 1) during the
course of an orbit. We illustrate this in the phase space plots
of Fig. 1 by showing the directions of the wave electric field
vector (solid arrows) and magnetic field vector (dotted ar-
rows) for various points in the PMAP cyclotron orbit for
{I| =2. Unlike the situation when the corotation effect
dominates, the x dependence of the wave phase (i.e., k, #0)
is essential to the energy gain process. The integral of p, °E,,
is dominated by the corotating component of the electric
field E, evaluated during that part or the orbit where p, is
parallel to k (the point where p, >0, p, = 0in Fig. 1). At
this point, which we term the “Doppler point,” the change of
the wave phase with respect to the particle position is slower
than at any other point in the orbit. The sign and magnitude
of Ap,, will depend on the value of the corotation angle at
the Doppler point. We denote this angle as 6, . As with the
corotation effect scenario, the value of the 65, (mod 27)
will change slightly from orbit to orbit according to the
change of ¢,,.

Whether it is the corotation effect or the Doppler effect
that is responsible for altering p, ,, the sign and magnitude of
Ap,, will depend on 6p (in the case of the corotation effect,
Opp is characteristic of the value of € over the entire orbit).
To deduce the relation between G, and the PMAP phase
variable 1, , we first note that the Doppler point is the point
one-quarter of the way around the PMAP cyclotron orbit
(Fig. 1), which will be reached at the time
ty.1s =1, +7/(2Q,). Evaluating the expression for the
corotation angle [Eq. (42)] att =1, /4 using the PMAP
trajectories [Eqgs. (11)-(15)] and the wave field definitions
[Eq. (4)], we discover

— ot . 4 (43)

Since x,,,., =0, this reduces to Opp =k.z,, /.
— t, . 1,4 Setting AW, 1,4 =¥, + A, /4, we can substi-
tute into the PMAP expression for Ay, [Eq. (38)] toarrive
at the relation

Opp = ¥, — ’1|7T/2y (44)

where we have ignored the small momentum terms. We see
that the change in 0y, from one orbit to the next orbit is
equivalent to Ay, (mod 27).

The phase dependence of Ap,,, as dictated by the
PMAP [Eq. (30)], is contained in the factor

Opp =KX, . 114
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cos(, + |1 ]7/2). Substituting in the expression for the
corotation angle at the Doppler point [Eq. (44)], we find

(45)

Taking into account the sign of the factor ay, |, Ap,, is in-
deed maximized as a function of ¥, at exactly the value of 7,
that maximizes gp, *E./(|p,E.|) at the Doppler point.

It is clear that only the perpendicular component of the
particle momentum p,, and the wave electric field compo-
nent E, are needed to alter the kinetic energy of each cyclo-
tron orbit. If [/ | > 1, there must also exist a nonzero oblique
component to the wave vector (k,#0). The parallel mo-
mentum p,, and the wave magnetic field B,, cannot be ne-
glected, however, as they play an important role in altering
the phase.

Ap,, « (—1)"lcos Opp.

2. The change in phase

Having established the importance of the Doppler point
corotation angle O in determining the kinetic energy gain,
we consider now the physical mechanisms responsible for
the slow variation of fpp, Or, equivalently, ¥, [Eq. (44)].
The jump in ¢, predicted by the PMAP [Eq. (38)] is ap-
proximately — 27|/ |, indicating that the wave propagates
past the particle approximately |/ | phases in a single cyclo-
tron orbit. The small, but essential O(€) deviations from an
exact — 27|/ | phase change are a result of the energy depen- .
dence of the cyclotron frequency and the particle’s stream-
ing motion along the background magnetic field. These ef-
fects are clearly evident in the unapproximated PMAP
expression for Ay, [Eq. (23)].

The Ay, equation in the small momentum version of the
PMAP [Eq. (38)] contains the energy dependence of the
cyclotron frequency in the negative semidefinite term

— 7|1 | [p1./ (mc)]> As the particle gains energy, the cy-
clotron frequency decreases and, with a fixed phase velocity
w/k, the wave will propagate further past the particle during
the increased cyclotron period. Consequently, ¥, will de-
crease slightly more than the nominal value of — 27(/|. In-
terestingly, the energy dependence of the cyclotron frequen-
cy is a relativistic effect and plays a major role in the
resonance acceleration process in the apparently nonrelativ-
istic regime of |p|/(mc) < 1.

The phase ¢, (mod 27) can also be altered by the parti-
cle motion along the background magnetic field during the
course of the orbit. The streaming component of Ay, ori-
ginally proportional to p,, in the full PMAP [Eq. (23)],
reduces to the term

2

21 (L g P2 P )

2m?c? mc 2m?c?

in the small momentum version of Ay,. Besides the initial
streaming terms proportional to p,, and p,,, there is an ener-
gy-dependent streaming term resulting from the wave inter-
action. This term is positive semidefinite because the wave
interaction always produces a p,, greater than p,, ie,
Pon — P >0 [Eq. (37)]. Assuming for a moment that
P = 0, then p,, >0 so that the particle moves in the same

(46)
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direction as the wave along B,,. Consequently, the wave does
not move quite so far past the particle during the course of a
cyclotron orbit as would be the case if p,, <0 and ¥, will be
increased slightly from the nominal value of — 27|/ |. If
Do > 0, the wave-induced streaming is enhanced by the ini-
tial streaming. If p, <0, the initial streaming opposes the
wave-induced streaming and thus the total streaming part of
A, will be negative unless the particle energy becomes high
enough that the wave-induced streaming dominates.

It is through the non-negligible streaming contribution
to Ay, that the motion of the particle in the direction of B,
plays a role in the acceleration process. The variation of this
motion is determined by the PMAP equation for Ap,, [Eq.
(31)] and perhaps a little surprisingly Ap,, is proportional
to the corotating component of the wave electric field. A
closer examination of the relation between the wave electric
and magnetic field polarizations [Eq. (34) ] that leads to the
simplified form of Ap,, reveals the following picture. If the
wave is electrostatic (k||E,, ), then wave magnetic field is
zero and the components of the electric field can be written
asE, =0, 7, E; + n,E, =0.The component of the force in
the z direction being proportional only to E; can then be
expressed in terms of E; and hence the corotating compo-
nent of the wave electric field [Eq. (41)].

If the wave has an electromagnetic component, then
Ap,, is determined entirely by the (vXB_)/c magnetic
force. When averaged over a cyclotron period, the zcompo-
nent of the electric force is canceled out by the (v, e, XB_.)/c
component of the magnetic force leaving the other compo-
nents of the magnetic force (proportional to E, + E,) to
push the particle in z. The one exception would be the case of
a wave where 77, E; + 7,E, = 0but E, #0 (linearly polar-
ized in the y direction). In this case, the z component of the
electric force is not canceled out and it is both the electric
and magnetic forces that push the particle in z. We conclude
that, for waves that are not purely electrostatic, the magnetic
field of the wave cannot be ignored since it determines, to a
large extent (if not completely), the motion of the particle
parallel to B, and, as we have seen, this is important in deter-
mining the variation of ¥, (mod 27) and hence p,,.

3. The acceleration scenario forp,,=p_,=0

Our discussion of the cyclotron resonance acceleration
process will not be complete until we explain how it is that
the momentum and phase changing mechanisms work to-
gether to produce large energy gains over many cyclotron
orbits. The acceleration scenario will be presented in two
parts. First, we consider the case where p,, =0 (this sec-
tion). Second, we consider initial momentum such that
Do ~Po ~OC(€) (Sec. I C4). We reiterate our earlier com-
ments (Sec. II A) that the PMAP initial momentum will
only be within O(¢) of the true initial momentum. For ex-
ample, p,, = 0in the PMAP might correspond to a finite p o
in reality and vice versa.

The change in phase [Eq. (38)] in the pjo =po =0
limit takes the simple form
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Ay, = —2x|l|[1+ (1 —7})(p},/2m* )] (47)
Though the magnitude of Ay, (mod 27) depends upon en-
ergy, the behavior of ¢, (mod 277) will be monotonic; either
monotonic decreasing if 7, < 1, monotonic increasing if
7, > 1,orconstantif 7, = 1. When 7, < 1, the phase velocity
in the direction of B, is greater than the speed of light and
the relativistic cyclotron frequency effect dominates the
phase change. Conversely, when 7, > 1, the phase velocity
along B, is less than the speed of light and the streaming
effect dominates. The phase change effects cancel each other
out when 7, = 1 leaving ¥, (mod 27) a constant and, as we
shall see, this causes singular behavior.

Let us first examine in detail the acceleration scenario
for |/]| =1 and then generalize for the scenario for other
resonance numbers. When |/ | = 1, the wave frequency is
within O(¢) of the cyclotron frequency and the PMAP equa-
tion for the change in perpendicular momentum [Eq. (30)]
reduces to

Apln =dl (El +E2)COS(¢n + 77/2)7 (48)

where d, is positive definite. Assume that 7,>1 and
Y, = 7+ 6, where & is a small number greater than zero
(8/m<1). The scenario is illustrated schematically in Fig. 2,
where we plot Ap,,, as a function of ¢,, (solid curve). A dot-
dashed line below the curve indicates the time history of ¢,
with a circle denoting the initial and final state of one period
within O(e).

Initially, Ap,, > O causing p,,, to grow and ¢, (mod 27)
toincrease. The growth of p,,, will continue aslongas ¥, isin
the range 7 < ¥, <27 (the “acceleration range”) corre-
sponding to the range of corotation angles where gp, *E, > 0.
After a finite number of orbits, say N, ¥, (mod 27) will
reach the value of 27[ ¢, (mod 27) = 0] and p,, will be a
maximum, having accumulated over the N orbits where
Ap,, >0. Continuing the monotonic increase, ¢, will trav-
erse the range 0 < ¢, <7 (the “deceleration range”) where
Ap,, <0 because of the corotation angle being such that
gp, *E. <0. The inverse symmetry of Ap,, about ¢, ensures
that p,, will decrease for NV orbits until the initial condition

of p,x = 0 is reached at ¢,y = 7 — 6. At this point, one
cycle of a periodic process has been completed (give or take
the small factor of §) with a maximum energy from the accu-
mulation process exceeding the quiver energy and a period
much longer than a cyclotron period.

If, instead, we were to consider the acceleration scenario
for the case where 77, < 1, then ¢, (mod 27) would be mono-
tonically decreasing. The scenario described above would
apply given the appropriate choice of initial phase
(¢ = 27 — &) and the sign changes for Ay, . Likewise, if we
consider different resonance frequencies (|/|>1), the
above described scenario will apply given the appropriate
choice of ¥, and sign of A¢,,. The major difference between
the acceleration processes at |/ | = 1and |/ | > 11is the rela-
tive inefficiency of the Doppler effect in changing the energy
compared to the corotation effect. This inefficiency is mani-
fested in the PMAP through the factor of (p,,/mc)"! = 'in
Ap,, [Eq. (30)]. As a result of the less efficient energy gain
per orbit p,,, will remain small for a larger number of orbits
and ¢, will take a larger number of orbits to cover the accel-
eration and deceleration ranges yielding a longer period for
the cyclic process. For |/]>3, the Doppler effect becomes
sufficiently inefficient that maximum energies exceeding the
quiver energy are no longer possible.

A less complicated, but more dramatic acceleration sce-
nario exists when 7, = 1. According to the small momen-
tum version of the PMAP, Ay, =0 when 7, =1 [Eq.
(38)]. Choosing ¥, so that Ap,, >0 implies that Ap,, will
be greater than zero for all n, and the particle will accelerate
indefinitely. This will be true for arbitrarily large p,, in the
limit £, = 0, where the small momentum version of the
PMAP becomes equivalent to the full PMAP. If k, 50, then
the rising p,, will saturate when p,, ~O(mc) because of the
effects of higher-order terms not included in the expansions
of the relativistic cyclotron frequency and the constant of the
motion that were used in deriving the small momentum ver-
sion of Ay, . Thus, when p,, ~ O(mc), the relativistic cyclo-
tron frequency effect no longer cancels out the streaming
effect and the phase begins to slip. Such a higher-order effect

Qg -
d,(E+ E,)
FIG. 2. The change in perpendicular mo-
mentum Ap,, as a function of phase
¥, (mod 27) according to the PMAP when
0 . ’ {7] = 1 (solid curve). Schematic representa-
! tions of the time history of ¢, are shown for
\\ Wb 72/, A " \Yj (mod 27)  a specific case of py =0 (dot-dashed
n
\) v7// T < curve) and p, ~O(€) (dashed curve). See
A 77/ . ..
NS 2 the text for a detailed description.
N NN - ’,
N> A
Ny — - .
— -~ monotonic, P, = 0
— — oscillatory, P, = Of(e)
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would explain why the maximum energies observed when
7, = 1 and k, #0 are independent of wave amplitude and
resonance frequency (Paper I).

The reader may have noted that the descriptions of the
acceleration scenarios all depend upon a judicious choice of
the initial phase ¥, . If ¢, is not chosen properly, the PMAP
can predict negative values of p, ,, an unphysical situation.
As we have emphasized, this failure of the PMAP to eluci-
date the initial phase dependence is a consequence of the
cyclotron orbit sometimes failing to be a good approxima-
tion to the particle trajectory when p , <O(€).

4. The acceleration scenario for p,, ~p., ~ O(e)

Let us consider briefly how the acceleration mechanism
works when the initial particle energy is of the order of the
quiver energy. When formulated in terms of the PMAP, the
predominant changes in the acceleration scenario with re-
spect to the p,o = p,, = 0 case will be due to the effect of the
P, term in the Ay, relation [Eq. (38) ]. This term provides
a constant streaming phase change in addition to the phase
changes stemming from the energy-dependent streaming
and relativistic cyclotron frequency terms. The behavior of
¥,, and hence p,,,, depends on the relative sign of the p,
term with respect to the energy-dependent terms that are
proportional to (1 — 7).

If the sign of p, is opposite that of (1 — %?), the accel-
eration process is little changed from the p,, = O scenario.
The behavior of #, is monotonic increasing or decreasing
(depending on the value of 7,), with the background
streaming effect simply increasing the rate of change. An
increased rate of change means that ¢, passes through the
acceleration range in fewer orbits. This decreases the sum of
Ap,,, over the acceleration range and, consequently, lowers
the maximum energy.

“If p, has the same sign as (1 —7?), then the back-
ground streaming term contributes to Ay, with a sign oppo-
site to that of the energy-dependent effects. To illustrate how
this alters the acceleration scenario, we consider the case
where |I| = 1,7, <1, and p,, >0, i.e., a regime where the
relativistic cyclotron frequency effect dominates the energy-
dependent contribution to Ay,. These parameters lead to
the simplified Ap,,, relation given in Eq. (48). To help guide
the reader through the scenario, we display in Fig. 2 a sche-
matic of the time history of ¥, on the Ap,, vs ¥, plot
(dashed line above the solid curve) with the square denoting
the initial and final states of a long period to within O(e).

Initially, the background streaming dominates the
phase change since | p,o/mc| > | plo/m’c*| and ¢, will in-
crease. Given the appropriate choice of initial phase
(Yo = 7+ &), Ap,, will initially be positive and remains
positive as long as 7 < ¥, < 2. If p,, is not too large, then the
rate of change of ¥, will be slow enough to allow p,, to build
up to a level that allows the energy-dependent term in Ay, to
cancel out and then exceed the background streaming term.
Assume that the cancellation of the two terms
[AY, (mod 277) =0] occurs at ¢, =19,, where 7<,

<2. The phase will begin to decrease but Ap,, remains
positive until ¢, = 7, at which point p,,, has reached a maxi-
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mum. Continuing to decrease, ¥, enters the deceleration
range (0 <1, <), where Ap,,, <0. The perpendicular mo-
mentum decreases and at the point ¢, = 7 — 3,, the back-
ground streaming term will begin again to dominate Ay, .
The phase begins to increase while Ap,, remains negative
until ¢, = 7 — & and the cycle is complete.

This acceleration scenario applies equally well to the
7, > 1and p,, <O case, provided the appropriate changes in
initial phase, acceleration—deceleration ranges, and sign of
Ay, (mod 277) are made. The scenario is similar to the
P = Oscenario in that maximum energies much larger than
the quiver energy occur with periods of variation much larg-
er than a cyclotron period. In contrast with the p,, = 0 sce-
nario, ¢, exhibits oscillatory behavior instead of monotonic
behavior. Maximum kinetic energies with an oscillatory #,
can often exceed maximum kinetic energies with a monoton-
ic ¥, because an oscillating ¢, spends more cyclotron orbits
in the acceleration range.

Oscillatory 1, behavior disappears when p,, exceeds
some critical value, say p,., and the background streaming
propels ¢, through the acceleration range before the energy-
dependent contributions to Ay, can “shut off” the back-
ground streaming. For p, >p,., the phase monotonically
changes and the maximum p,, decreases as p,, increases.
Numerical solutions of the full equations of motion have
verified that this type of phase behavior occurs with values of
p.. within order unity of those estimated by the PMAP.

As was the case when p,, = 0, it is not wise to press the
PMAP too far since problems with the initial phase and mo-
mentum dependence thwart the PMAP predictive power.
This becomes obvious when we ask what happens when
P.o —0. Sticking to the oscillatory scenario described in this
section for p, ~O(€), we would expect that the oscillation
period and maximum energy would decrease to zero. But
this is not what happens; the initial phase changes to differ-
ent values so that, when p,, —0, we have the p,, = 0 accel-
eration scenario as discussed in Sec. II C 3 with large maxi-
mum energies. Let us appreciate the physical intuition that
the PMAP has given us and move on to a more complex
Hamiltonian analysis that will satisfy our quantitative needs.

I1l. REDUCED HAMILTONIAN EQUATIONS OF MOTION

To probe the details of the cyclotron resonance accelera-
tion process that fell through the cracks of the PMAP we
turn to a Hamiltonian formulation of the test particle prob-
lem. Hamiltonian methods were used in Paper I to derive a
pseudopotential function that was able to describe the be-
havior of the kinetic energy on time scales longer than a
cyclotron period. In this section, we extend the Hamiltonian
formulation of Paper I to produce reduced equations of mo-
tion capable of predicting cyclotron orbit-averaged details of
the particle trajectory either analytically or in far less com-
putational time than it would take to compute solutions of
the full equations of motion.

In Cartesian coordinates, the Hamiltonian for a test par-
ticle in the electromagnetic wave fields described in Sec. I1
[Egs. (4) and (5)1],is

F(x,pt) = [m*c* + (Pc — qA)?*]1"?, (49)
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where the canonical momenta are defined in terms of the
physical momenta as P = p + gA/c. The components of the
vector potential can be reduced to

A, = (mc*/|q])] — (v /w)y + € sinf], (50)
A, = (mc’e,/|q|) cos B, (51)
A. = — (mc’e/|g|) sin 3, (52)

where €, is given by Eq. (10) and we have introduced the
phase variable

B(x,z,t) =k x + k.z — wt. (53)

A number of canonical transformations of the Cartesian
Hamiltonian must be performed before a sufficiently useful
time-independent Hamiltonian and corresponding set of ca-
nonical coordinates is produced. We refer the reader to Pa-
per 1 for details on the sequence of transformations that we
employ and will only present here the resultant Hamiltonian
and the definitions of the corresponding canonical coordi-
nates in terms of physical coordinates.

The Hamiltonian of interest [Eq. (24) of Paper I] can
be written to O(¢€) as

H(é’,&,Pg,j,P'u) =H0 (ng—j,P#) + Hl (g"yé‘:Pg;ij‘u )7

(54)
where
Hy(P.IP,)=Y — P, (55)
-~ 1 * . -
H (§6PLP) =2 3 a,sinls+s(n—Dd],

(56)
with H, ~O0(1) and H, ~O(e). We have introduced the
following quantities into the H representation:

Y(PIP,) = [1+ (o./0)T +sIP.)

+ (77zP~ _77x1)/1)2]|/2’ (57)
a, (P_;";IYP;:) = - (a)(/a))ﬁ[ (€| + €, )Jn n] (nxﬁ)
+ (61 - 62 )JNA 1 (nxﬁ)]
+ 2S€3 (77:P~ - 7].\'});1 )Jll (nrﬁ)’ (58)
where
p(P.D) = [Qw/w) T +sIP.)]"? (59)
and s is the sign of the charge. Unlike the Paper I representa-
tion of H, we have chosen to use dimensionless canonical
variables. In particular, the canonical momenta (P ,I,P#)
are in units normalized to w/mc* and the Hamiltonian H is
normalized to mc®. To maintain the canonical properties of
the Hamiltonian system it is necessary to introduce the nor-
malized time variable r = w?. In our set of dimensionless
variables, derivatives withArespect to time are expressed with
the independent variable z.

The canonical variables (g‘,(},P;.,‘f,PH) are defined in
terms of the physical variables by the relations,

E=F+ (w/w.)sn, (p,/mc + s€; cos B) + sid, (60)

— (p,/mc + s€, cos B) )

- (61)
s(p./mc + se, sin 5)

¢ = arctan(

u=kx—kz— (w/w)sn.(p,/mc+se cosf3),
(62)
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Pi’ == —1;(77)( px _|_ 77: _}._7_:_.
; n° me mc
W, .
——sn,y + 5(7.€ —?7:€3>sm/>’), (63)
c
I = _w_[(P.‘- + €, sin[j)k
20, L\mc
Py :
+ |25 + 56, cos B —slP., (64)
mc ;
1 Px P-
Ru = .—7<77: - 77X -
7’ me mc
@, .
——‘577:)’+5(77:51 +?7:<63)Sln[3>7 (65)
c

with B(x,z,¢) given by Eq. (53). Inverting these definitions,
we obtain the following expressions for the physical vari-
ables as functions of the canonical variables:

x = (c/o7) (4 + 1.6

—slpd+ 1,1+ sp’psin ), (66)
y=(c/w)| —s(@/w ) (P + 7.P,) +p cosé)],

(67)

2= (/o) (1. — N — sl +n.1), (68)

P/ mc = (s /w)p cos é

— S€, sin(g“—sl[é—ksnxﬁ sind), (69)
p./mc= — (0. /©)p sin )

— 5€, cos(& — sld + sn.p sin é), (70)
p-/mc=mn.P. —nP,

+ s€, sin(§~—sl§5+s77xﬁsin<}5), (71)

with p(P;, Fa) given by Eq. (60). In Paper I, the relation
between the canonical coordinates ( §,<~¢3,,u,P§ ,T,P# ) and con-
ventional action-angle guiding center canonical variables is
discussed. The Hamiltonian H and corresponding canonical
variables differ from Hamiltonian formulations used in pre-
vious studies of wave—particle interactions™'? in that there is
no singular behavior in the canonical coordinates as 77, —0.

The cyclotron resonance approximation used in Paper I
and in the construction of the PMAP (Sec. IT) is founded on
the assumption that there are two widely varying dynamical
time scales, with the faster time scale being on the order of
the nonrelativistic cyclotron period. In the Hamiltonian for-
mulation, this separation of time scales is determined by the
relative magnitude of the two frequencies w, = d¢& /dt and

w, =dd/ dr. These nondimensional frequencies can be com-
puted from H and are found to be

o, = (/N [Glo /o) +7.(q.P. —1.P,)]
— 1+ 0(e), (72)
>, = w. /Yo + 0(€). (73)

Defining the winding number 7 to be the ratio of the slow to
fast frequency, we see

r=sl+ (w/o)n.(n.P: — 1. P,) — (0/0)Y + O(€).

(74)
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The cyclotron resonance approximation assumes 7~ O(€)
with / chosen to satisfy this as well as possible. When ex-
pressed in terms of the physical variables, the assumption of
small winding number is equivalent to the resonance condi-
tion [Eq. (1)] normalized to the relativistic cyclotron fre-
quency . In the above analysis, it has been implicitly as-
sumed that 0H, /9P, ~O(e), which seems reasonable given

~ O(€). We shall discover later (Sec. IIT C2) that this is
not always the case.

Reduction of the Hamiltonian H in the cyclotron reso-
nance approximation can be carried out either discretely or
continuously. Though the discrete mapping approach pre-
sented in Sec. ITI A is often the method of choice (since the
time averaging process is explicit), there are difficulties with
accuracy in certain regions of phase space. We are thusled to
construct equations of motion with a continuous time vari-
able in Sec. III B from an orbit-averaged reduced Hamilto-
nian. Details of the particle trajectories in the small momen-
tum limit are studied in Sec. III C.

A. Orbit-averaged mapping equations

Our goal in this section is to construct a set of area-
preserving mapping equations that will approximate the par-
ticle trajectory in the canonical variable phase space. The
mapping equations will determine the slowly varying vari-
ables P, and £ on the phase space surface of constant
¢(mod 27r) with successive iterations of the map (denoted
by the subscript 7) indicating an increase of é by 27, i.e.,
b, 1 = #,, + 2m. The map construction outlined below em-
ployees standard methods of Hamiltonian analysis that are
discussed in detail elsewhere.'!

We seek a mapping of the form

P, =P, +AP, (P, .£,), (75)

§n+1=§n +27T"(P§"+1)+g( 5n+l>§ )1 (76)
where ris the winding number given by Eq. (74) without the
“0O(€)” term. When € = 0, then APSh" =g=20and Ps“.. isa
constant of the motion. In this limit, £, will advance by an
amount equal to the slow frequency w, times the fast period
T =27/w,, with @, given by Eq. (73) without the “O(€)”

term.
The first-order correction AP; to the trivial zeroth-or-

der behavior of P, is computed by mtegratmg the equation
of motion for dP, /dt from time t to t + 7,

1,, + T dP«
[ ass
f dt

APS“..

n

deE‘;H‘ £+ nido +niPs T

= - . n w1, )y LI, » ’

R 9 ( 1570 2L, 1)
7n

where the zeroth-order trajectories are substituted in for the
canonical variables in the integrand. For purposes of area
preservation, the value P, is used instead of P, . Also, Tis
aconstantto O(€?) mdependent of n. Thiscan be deduced by
integrating the expression dl /dt = — 8H, /3¢ to lowest or-
der between t andt, + T.

Evaluating the AP, integral [Eq. (77)] using the first-
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order Hamiltonian [Eq. (56) ] and keeping in mind the reso-
nance approximation, we find

AP, = — (mo/w.)a; cos &, (78)
where g, (P, ) is given by Eq. (58) with P, substituted in
for P,.

The first-order correction g to the zeroth-order rotation
of &, is determined by demanding that the map be area-
preserving in (P,,&) phase space. A consideration of the Ja-
cobian of the map transformation defined by Egs. (75) and
(76) yields the following condition for area preservation:

I(AP, ) ag

+
oP;, . ¢,

This differential equation can be easily integrated upon sub-
stitution of the AP, expression [Eq. (78)] to yield

= (7w/w.)a; sin &, (80)
where

— (sI*/p)[ (e, — &), 1 (7.p)

— (& + &)W, (0p) ] — 2. €71 (1:p)

+ 256, {n.J,(1.p) + (slo/p*0.) (.P;, —n.F,)

X[”]xﬁJl—l(nxﬁ)_IJI(”xﬁ)]} (81)
The map is now complete. Starting with values for (£,,P; ),
the valueof P, isobtained by solving the P, map equation
[Eq. (75)] for P,  given the function AP, (P. &)
[Eg. (78)]. Direct substitution of P, and £, into the £
map equation (76) with r(P§ ) given by Eq. (75) and
g(P,  .5,) given by Eq (80) ylelds &, .- Initial condi-
tions ﬁx the value of ¢(mod 27) and the constants of the
motion 7 and P,. We denote the map constructed above as
the “QMAP” since it is more quantitatively accurate than
the PMAP constructed in Sec. II.

The QMAP can be simplified by assuming small mo-
menta. In physical variables, the small momentum limit de-
mands |p/mc| <1, which, when translated to canonical vari-
ables, is equivalent to the conditions T+ sIP, <1 and
n.P; —71,.P, <1. Expanding the AP, ,»,and g functions
of the QMAP in the small arguments [making use of Eq.
(27) ] we arrive at the following set of mapping equations for
negatively charged particles:

P. =P, — (mo/mc)b“ plicosé,, (82)

Sntd

§n+1 =§n +27T(|ll -
(0]

=0. (79)

— T+ 1P,

*u»l

c

@D
U (772P.j:n+l —WXP#))

c

+ %, 51 sing,, (83)
where
bUl: —(—nx)ll‘_lwc(el+62)/2|”—1F(|li)w’
(34)
Ci =(Illza)/a)c)b“p » (85)
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and p(P; ) is given by Eq. (59) with P. P, .In the
small momentum approximation p < 1.

Tosee if the QMAP provided a reasonably accurate esti-
mate of the true phase space trajectories, we compared
QMAP solutions with numerical solutions of the full equa-
tions of motion [Egs. (2) and (3)] over a range of the free
parameters (|/ |, w/o,., 7, a, € kx,) for cold initial condi-
tions (p, = 0). We found good agreement when |/ {>2, al-
beit we did not do as complete a survey as will be discussed in
Sec. III B. Thereis a problem, however, when |/ | = 1 and the
true behavior of £ in certain regions of phase space is not well
modeled by the QMAP.

This difficulty can be understood as follows. When
|/| = 1, the £ QMAP equation [Eq. (83)] contains a term
proportional to (sin &,)/p(P;, ). For cold initial parti-
cles, there are portions of the phase space orbits (where the
momenta are very small) that pass very close to those values
of P, that make p = 0. Fortunately, the true phase trajectory
is also in a region near £ = 0 or 7 so that the value of sin £,
also approaches 0. The behavior of the ratio (sin § /p(P;) is
extremely sensitive to the exact values of (&, P;) to the ex-
tent that a slight deviation from the true trajectory as § -0 or
7 results in a value much greater than unity. Unfortunately,
as a consequence of the fixed time-step size of the QMAP
and the implicit nature in which the quantities are advanced,
the discrete jump in P, is computed before the corresponding
jump in £, and the quantity (&,, P. ) deviates enough
from the true trajectory that QMAP ratio sin &, /p(P; )
becomes extremely large. The deviation is enough, in fact, to
cause large inaccuracies in the values of £, ., —§,. More
will be said about these regions of singular behavior in Sec.
111 C.

In trying to circumvent this problem, we are immediate-
ly led to consider the possibility of decreasing the time step of
the jump so that the quantity (£,, P, _,) more closely ap-
proximates the desired quantity [£(¢), P, (¢)]. This can be
done most effectively by abandoning the discrete jumps of a
map altogether and constructing orbit-averaged equations
of motion with a continuous time variable.

B. Orbit-averaged continuum equations

With the aid of adiabatic canonical perturbation theo-
ry,'? it is possible to transform the Hamiltonian H to a new
Hamiltonian H that will depend only on slowly varying vari-
ables to O(€), provided the resonance approximation is sat-
isfied. This transformation was used in the course of deriving
the HPP theory in Appendix B of Paper 1. We outline the
transformation below in the context of the dimensionless
canonical variables that have been introduced in this paper.

The generating function S for the transformation can be
written as a function of the old coordinates and new momen-
tum as

+ T+ uP, +S,(£6,P..IP,)

M

(86)

where
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S, (£6.P..I.P,)
BN —a——cos (E+s(n—D3] (8D
20, n =L s(n=1D)
nsl
and g, (? —_) is given by Eq. (58) with

(P IP )-—»(P IP ). To O(e), the new canonical vari-
ables (5 d) P I ) are defined in terms of the old variables
according to the relations

- as,
. , (88)
s=5+t 3P
AT
b=¢ + 3
as,
L=p aP,
— as
P.=P. ——-, on
< B aé»
- -~ 4d§
T=1———, (92)
B ¢
P, =P, (93)

where (P, IP ) have been substituted in for (P IP ) in
the .S, deﬁnmon [Eq. (87)]. The Hamlltoman H [Eq
(54)] transforms to H, where

H=Y—P. + (a/2Y)sin & (94)
and Y‘(P IP .)_1s given by Eq. (57) with
(P- IP ) — (P IP ). By choosing S, properly, the fast
varying terms have been displaced to O(€*) in transforming
from H to H. What remains in H is essentially H averaged
over one period in ¢ while the other variables are held con-
stant. Thus, like the QMAP, dynamic details occurring on
time scales less than 27/w, (roughly the cyclotron period)
are absent.

From the orbit-averaged Hamiltonian H, we can com-
pute the orbit-averaged equations of motion for the canoni-
cal variables £ and P, :

dE , 1 ( , T'). <
==Y —1+—|a; —a——Jsing, (95)
7 e ! ! T 4
dP.
i = _—(i[—cosg, (96)
dt 2Y
where
Y = slo /oY + (17,/Y) (7, P: — 7.P.) o7

and a; is given by Eq. (81) with P; —»ﬁg and T—1. The ca-
nonical momenta / and P, are constants of the motion and
the linear time variation of the corresponding angles can be
written as

- - dH ~
¢ = +ﬁt’ (98)
_ _ JH ~

In the small momentum limit, the orbit- averaged equa-
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tions of motion can be reduced to the simpler form [cf. the
QMAP reduction, Egs. (82) and (83)]

dP. by [ 20\ ~ — i

— = =7 [ |P. £ 100
7 5 [(mc)( + 7] __)] cos &, (100)
de o, (wc)- =

gs 1719 (2 )Ty 1P

dt ) 1) ( I71F)

+ 7: (77:?\ - nxﬁp ) —1

il{/2—1
+i{<3‘i)(?+ |1|FE)]W sinE (101)
2 \o. ;
where b, and ¢, | are given by Eqgs. (84) and (85), respec-
tively, and we have assumed negatively charged particles.
We also make use of the fact that, in the small momenta
limit, the resonance condition is satisfied when
o=|l|o.+ O().

To complete the orbit-averaged continuum description,
we need a prescription that gives the canonical variables
(£,6.P.. L1, P ) in terms of the physical variables and vice
versa. In theory, this is straightforward, given the definitions
of these variables in terms of(_c,,a& P, 1, uw P,) [Eqs (88)~
(93)] and the explicit relations between (5 aﬁP I,,u P,)
and the physical variables [Eqs. (60)—(71) ]. In practice, we
have chosen to  simply  set (g é qu__ 7,/1 )

= (£,6,P. I, ,P ) and ignore the .S, corrections. Equatmg
the angles (§ aS,,u) (&, 55,#) is undoubtedly a reasonable
approximation since the angular variations are O(27) and
the corrections are O(€). Equating the actions (P )

(P 1) is reasonable if we interpret (P,, 1) as represent-
ing quantities time-averaged over the fast period 27/w, . We
must then assume that the physical initial conditions repre-
sent the initial time-averaged values of (P,, T) through Eqs.
(60)—~(65). Conversely, the physical variables derived from
Eqgs. (66)—(71), assuming (P, D= (—P_.:j), will be charac-
teristic of the time average.

With (£,6,P., T, P,) = (£ &, P., I, P,), the or-
bit-averaged continuum equations are identical to the con-
tinuous limit of the QMAP [Eqgs. (75) and (76)] in the
sense that

dP. AP

— = 102

dt T ( )
£=M (103)
dt T ’

when P, —»—Isg and £, —&.

Being ordinary differential equations in a continuous
time variable, the orbit-averaged equations of motion can be
solved numerically with arbitrary time steps (i.e., as small as
needed for stability) and hence avoid the difficulties that
were imposed on the QMAP by a fixed time step interval.
The freedom to impose an arbitrary time step should be
viewed solely as a mathematical convenience since short
time-scale physical effects have been averaged out.

To numerically solve the equations of motion, we use a
standard fourth-order accurate Runge-Kutta'? algorithm.
As a demonstration of the validity of the orbit-averaged con-
tinuum approach, we compare numerical solutions of the
orbit-averaged equations to numerical solutions of the full
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equations of motion [Egs. (2) and (3)], which were also
solved with a Runge-Kutta algorithm. In particular, we
compare predictions of the maximum kinetic energy U,
and the oscillation period 7, characteristic of solutions in the
cyclotron resonance regime, over a broad range of the pa-
rameters |/ |,o/w,,7,kX,,a, and € for circularly polarized
waves and cold inijtial conditions. The size of the parameter
space surveyed is somewhat greater than that surveyed in the
extensive comparison of predictions of the HPP theory to
solutions of the full equations of motion that was presented
in Sec. IV of Paper 1.

Referring to the “deviation” as the difference between
the orbit-averaged prediction and the full equation predic-
tion normalized to the full equation prediction, we find that,
onthe average, when |/ | = 1, thedeviationin U, is typical-
ly 1% with a maximum around 11%. The deviation in 7, is
typically 3% with a maximum of around 17%. When
|I| = 2, typical deviations in U,,,,, and 7, are 5% and 17%,
respectively, with maximums around 39% (U, nax ) and 50%
(7,). For |I| = 3, we compared only solutions with 77, = 1
and found typical deviations of U,,, to be 4% with a maxi-
mum of 13%. Typical deviations of 7, were 40% with a
maximum of 56%. In short, the U,,,, and 7, estimates from
the orbit-averaged equations are accurate to the same order
as those from the HPP theory.

Examination of the particle trajectories generated from
the full equations of motion reveals that when the larger than
typical deviations occurred, it was often for the following
reasons. First, solutions that have large values of 7, (e.g,,
when |/ | = 3) require extremely large numbers of time steps
and the numerical solutions of the full equations can become
inaccurate. Second, some parameter values (for example,
B, = mwhen |/ | = 2) place the particle trajectories uncom-
fortably close to separatices, i.e., boundaries in phase space
defined by the orbit-averaged Hamiltonian theory that sepa-
rate regimes of qualitatively different behavior. Higher-or-
der effects not included in the orbit-averaged theory will
cause the actual particle trajectory to jump between regions
of phase space both inside and outside the separatrix, where-
as the trajectory generated from the orbit-averaged theory
will remain smoothly on one side or the other. We have more
to say about the detailed phase space structure in the next
subsection.

C. Phase space structure in the small momentum limit

The orbit-averaged continuum equations can be readily
employed to predict details of the particle trajectories be-
yond the scope of both the Hamiltonian pseudopotential the-
ory (Paper I) and the PMAP (Sec. IT). In what follows we
explore the character of the trajectories for negatively
charged particles in the ﬁ_& -& canonical phase space as deter-
mined by the orbit-averaged equations of motion in the small
momentum limit [Egs. (100) and (101)]. To keep within
this realm of parameter space, we will only consider param-
eter sets where 7, % 1. We limit our analysis to |/| = 1 and
|/] = 2, since they are the only values of |/ | that lead to ener-
gies above the quiver energy when 7, #1.

Of primary importance in determining the properties of
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the particle trajectories in phase space is the location and
nature of the fixed points, ie., those points where
dE /dt = dPr/dt-O Setting dP; /di =0 [Eq. (101)], w
find that any fixed points must satrsfy one of two possible
conditions:

A:cos &, =0,
B:a, [(Pgs) =0,

(104)
(105)

where we denote the candidate fixed points that satisfy con-
dition 4 or condition B as (5—“ 4 ?gA) and (EB, —155“3)! respec-
tively.

Before pursuing the fixed point solutions, we pause to
introduce some new notation. Consideration of the canoni-
cal cyclotron radius p [Eq. (59)] indicates that, for physi-
cally realizable problems (where p 1s a real number) the
values perm1331ble for P are bounded from below by P "

where PSm L= 1/]1 | 1t is convenient to introduce the di-
mensionless variable P - - defined as
P.=P.—P, . (106)

When expressed in terms of the physical variables [Egs.
(60)-(65)], P : reduces to an expression involving only the
perpendicular momentum and the phase:

P.=-2 [(Px + se sinb’>2
fT e N\ me T

+ (p_y + se, cos/j’)ﬁ],

mc

(107)

Another useful quantity is a constant of the motion P/ _;.,
where

’
szm

—75.P,. (108)

772 P min 1=
Written in terms of the initial values of the physical vari-

ables, P ., becomes
P ’

z min

= po/mc — s€; sin By — 7P} . (109)
The assumption of small momenta is equivalent to the as-
sumption that P <land P ;. <.

The ex1stence of fixed points is established by solving the
equation dg' /dt=0 [Eq. (100)] for either P i, (case 4) or
£, (case B). The nature of the particle motion near the fixed
point is then investigated via linear stability analysis. Using
the case 4 fixed point as an example, we assume solutions of

the form

Pi(1) =P, + 6P, (110)

E(r) =&, + 65, exp(Ar), (111)
where 5_P.é and 8¢ are perturbations sufficiently small so
that the equations of motion can be linearized about
(&,, P £,)- Solving the resultant set of linear equations for
the eigenvalues A4, the fixed point can be classed as the stable
type if both eigenvalues are imaginary, or of the unstable
type if both eigenvalues are real. When the eigenvalues are
real, there will be both a positive and negative branch, in
which case the fixed point is of the hyperbolic type.

The remaining discussion is broken up into separate sec-
tions, the first describing phase space properties for |/ | =2
and the second for |/| = 1. In addition to the fixed point

exp(/i;),
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structure, we will examine the behavior of the phase angle £
and determine under what physical initial conditions £ be-
comes an oscillatory (as opposed to monotonic) function of
time. An oscillatory £ implies that the particles are “phase
trapped,” which is an important process, for example, in
interactions of whistler waves with charged particles in the
Earth’s magnetosphere.'*

1. The /lI/=2 resonance

We consider first the |/| = 2 resonance since the candi-
date fixed points are of a more standard variety than what we
will find for |/ | = 1. In Fig. 3(a), we show curves of constant
H (denoting possible particle orbits) in (£, P ) phase space.
Fixed points corresponding to cases A and B are labeled with
an “4” and “B,” respectively.

The fixed points for case 4 must clearly have &, = 7/2

37/2. Solving the d& /dt =0 equation forP;“, we find
?3 [1/(1—7)]
X [20./0 — Y + 7. P i + 7, (€, + € )sin €, ]-

(112)

Performing the stability analysis we find that the eigenvalues
satisfy the equation

A= —(l—vyﬁ)nx(e,+62)P;AsinEA, (113)

indicating that (57’ PR P i) 1s a stable fixed point for
&, =m/2(37/2) when 7, <1(>1). A flipping of the stable
point from &, = 7/2 to £, = 37/2 as 7, increases through
the value of 1 does occur and has been observed in numerical
solutions of the full equations of motion.

The oscillation period about the stable fixed point pro-
vides a crude estimate of the oscillation period 7, character-
istic of the cyclotron resonance acceleration process. As-
suming @ = 2w, and cold initial particles, the eigenvalue
relation [Eq. (113) ] and definition of P <, yield the estimate

m,=[n(6, + &)V + Pl sinE, ]2 (114)

where 7, is in units of the wave period (27/w). Comparing
this estimate to those obtained in Paper I, we find that Eq.
(114) predicts a significantly lower value than that found
from either the HPP theory [Eq. (44) of Paper I] or the
numerical solutions of the equations of motion [Sec. IV of
Paper I]. The reason for this is that all trajectories for cold
initial particles lie close to the separatrix (a point discussed
later in this section) and will therefore have a longer oscilla-
tion period than those near the stable fixed point.

Turning to the case B fixed points, a solution to the
equation a, (PgB) =0is P;.B = Pgmm, or P L= 0. Other so-
lutions might exist, but they will have P ~O(1) and are
therefore beyond the scope of this study. The solutions £, to
dE /dt = 0 must satisfy the relation

sinép = — [1/7,(e, +6)]Q0/0, — 1 +7.P,.).
(115)

There will be two solutions for £, if the right-hand side of
Eq. (115) is less than one, and no solutions otherwise. As-
suming that solutions exist, the stability analysis yields the
eigenvalues
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FIG. 3. Contours of constant H in

the (£, P,) phase plane representing
the possible trajectorieswhen |/ | =2
(a) and |/| = 1 (b). Throughout the
small momentum regime, the distri-
bution of trajectories resembles that
shown here. Separatrices are indicat-
ed with a dashed line and the stable
fixed points are labeled “A”. The la-
bel “B” corresponds to unstable
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c
£
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fixed points in (a) and unstable sin-
gular points in (b). The particular
parameters used to generate this fig-
ure were 7=08 a=45, €
=3.16X10"% w/o =|!|, and
By =7/2 (B,=00) for |/[|=2
(}/| = 1) with right-hand circular-
ly polarized waves.

(116)

A= +7.(e +€&)cos &5

The points (£, P t,) are thus fixed points of the unstable
hyperbolic variety.

The structure of the orbits in (£, P.) phase space [Fig.
3(a)] is not unlike that for a classic nonlinear oscillator, i.e.,
a stable fixed point flanked by two unstable fixed points.
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There exists a separatrix connecting the two unstable fixed
points that separates the orbits that are oscillatory in & from
those that are monotonic [dashed line in Fig. 3(a) ]. Qual-
itatively, the phase space structure throughout the small mo-
mentum regime resembles Fig. 3(a) when fixed-point solu-
tions for & exist, though the locations of the fixed points vary
depending on parameter values and initial conditions.
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Whether £ is monotonic or oscillatory in time depends
on which side of the separatrix the initial conditions place
the trajectory. This can be determined in the following man-
ner. When 7, < 1 we consider the functional dependence of
H on 5 as we move along line of constant P ¢ when
Pl = P . . Starting at the stable fixed pomt £, = 7r/ 2 and
moving 1n the direction of increasing &, we see that H is
monotonically decreasing in the interval E=[7/2,37/2].
Thus, if the value of H corresponding to a given set of initial
conditions is greater t than the value of H evaluated on the
separatnx H, =H( § B,P ), the orbit will be oscillatory in
£. Evaluating Hand H, [Eq (54)] in terms of the initial
conditions using the estimates for ( Es, ;ﬂ) and assuming
® = 2w, the oscillatory condition H — Hp >0 can be writ-
ten

sin &0 + 7P Lin /M. (€1 + &) >0. (117)
When 7. > 1, the stable fixed point shifts to £, =37/2and
H (E,P ) is monotonically increasing as £ decreases from
37/2 to #/2. In this case, the condition for oscillatory &
behavior H — H, <0 and the direction of the inequality in
Eq. (117) must be reversed.

As an example, we investigate the condition for oscilla-
tory & when 7. < 1 and the particles are initially cold. We
first note that whether the orbits are oscillatory or not, they
will all be close to the separatrix in the sense that the initial
conditions place H much closer to the value of H , thento the
value of H at the stable fixed point. This claim follows from
the fact that P /P ~6(e)1 for the initially cold particles.
Recalling the definitions of the canonical variables in terms
of the physical variables [Egs. (60)—-(65)], the oscillatory
condition can be written to lowest order as

esin’ B, — € ¢cos? By + 26, €, cos’ B,
€ sin? B, + & cos® By

G, =sin [3’0(

P R ) (119)
7, (€ + &)

Figure 4(a) contains plots of G, for circularly polarized
waves as a function of the initial phase /3,. Several different
curves are shown, each with a unique value of the propaga-
tion angle .. The condition for oscillatory &behavior is satis-
fied for a variety of initial conditions and exhibits a nontri-
vial dependence on angle. These predictions of the onset of
oscillatory behavior agree with numerical solutions of the
orbit-averaged equations of motion. Comparing to the solu-
tions of the full equations motion, we find good agreement
for a = 5°and 45°. When a = 85°, the full equation solutions
have a tendency to jump between the oscillatory and mono-
tonic branches if 3, is not close to 7/2 or 37/2.

2. The [l/=1 resonance

In Fig. 3(b), curves of constant H are plotted in (&, P})
phase space for the |/ | = 1 resonance. The curves look qual-
itatively similar to the |/ | = 2 curves and in many ways they
are. Both resonances have stable fixed points (labeled by
“A”) and have a clear separation between the orbits that
oscillate in & and those that do not. The primary difference
between the two resonances is that for |/ | = 1, there are no
fixed points that satisfy condition B [Eq. (106)]. Rather,
“singular points” satisfying condition B exist and they be-
have like fixed points in certain respects.

Before considering the details of case B, we examine case

G, (3,) >0, (118) 4. For angles &, =7/2,37/2 the d§/dt = 0 equation dic-
where tates that P ¢, satisfies the relation
2
S
e N
/ N
i / it N
/ ] ‘ \
’ T N _ L
i s i l N - N 7 e
4 - AT : . ~.
// ’ } \\.", '/'/ \ k \_\
) v 1l N v N FIG. 4. The function G, versus initial
0 N ! ‘.‘ P by IS phase3, when |/| = 2 for various angles of
N ! | o RN ! ! s propagation @ when 7=0.8, €=3.16
i N A 7 N b L %10*, and w = 2w, for cold initial par-
S - N ! I s ticles and right-hand circularly polarized
\ b ,/ ‘ waves. When G, > 0, the behavior of £ is
N
7 \ b / oscillatory.
5 A
----------- a= Ve
- —— - a:45° \ - - 7
i ——— - a=85 N
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PP

=?a7(6’ +6&)% (120)

o, 2
)+1_———772P;mm]
@

The stability analysis yields the eigenvalue equation

P +ez)z(&>‘/2

P @
S4

D 1372
< (6, +€ ){w 172
X 1_ 5 S_ _ 1 2 c) .
[( 7:) sin &, 4 \ o ]
(121)

Thus &, = 37/2(7/2) corresponds to a stable fixed point
when 7, <1(> 1). The shifting of the fixed point as 7,
passes through 1 has been verified with numerical solutions
of the full equations of motion. In Fig. 3(b), we show the
stable fixed point (A) for 77, < 1.

Considering cold initial particles and setting @ = a)c, we
obtain from Eq. (120) the following expression for P :

=i|(e + &)/ (1= |* (122)

when we assume P ] i <P: ¢, (justified a posteriori). As was
done for |/| = 2, we can estimate the resonance oscillation
period 7, using the stable fixed point eigenvalues [Eq.
(121)] and the P : relatlon {Eq. (12)]. Normalizing 7, to
the wave period, we find

T, = 2/V3 . (123)
[1— 7 | e, + €677

Contrary to what was found for |/ | = 2, the 7, estimate re-
sulting from the stable fixed point eigenvalue analysis is re-
markably close to the 7, estimate from the HPP theory [ Eq.
(41) of Paper 1] and the predictions of numerical solutions
to the full equations of motion [Sec. IV of Paper I]. Like the
|I| = 2 case, the orbits of cold initial particles lie near the
separatrix. However, unlike the |/ | = 2 case, the oscillation
periods for orbits near the separatrix are approximately
equivalent to the oscillation periods of orbits near the stable
fixed point. Anticipating our upcoming analysis, we conjec-
ture that the fast periods near the separatrix are a manifesta-
tion of the particle behavior in the vicinity of the case B
singular points, where changes in £ become quite rapid.

Moving on to the analysis of case B, the solution of inter-
est to the equation a; (P ) =0is P~ = P§ , the same as
we found for |/| =2. Consequent]y, any candidate fixed
points must have angles &, that solve the equation

) 172
P;mm (61 + € )(_—L)
8w

)

X __ lim ——-SE_-:S—— . (124)
EPo~GoPep \ (P — P2

The only hope for a solution is &, = Oor 7so that the limit as

&, and 75§ —»E.B has a chance of remaining finite. Even

so, the limit in Eq. (124) is not uniquely determined so we

will have to content ourselves with examining the trajector-

ies in the vicinity of the candidate fixed points.
Letting £ and P take the form & =&, + 6 (#) and
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—I_’g =_P§B + 5?53(;), where 65 and 5?5 are infinitesimal
perturbations, the orbit-averaged equations of motion [Egs.
(100) and (101)] to lowest order become

d5f’5 = (2" 510
doé o,
2= —1 P!
dt a) +772 z min
} _ @ 172 55—
— (€, + €, )cos ( c) — 126
1 2 §B 8(0 (SP;/Z ( )

Analytic solutions to these time-differential equations are
found to be

8P, =6P. (1+1/C,) (127)
(SE = ((L)C/CL)—— 1 +77zP;mm)
X[(+C)?—C? +2C 120+ C), (128)

where
C, = [P/ (& +&)cosEx ] (8w/w.) %, (129)
C, 58
C, = 190 , (130)

wc/m -1+ 7721‘);min

and (5§0, (SP ) are the initial values at time 7 = 0. If we
make the assumptlon that 5P- is small enough so that

6§0>C1 (wc/w_l+ﬂzP;m1n) (131)
then the 8¢ solution takes the relatively simple form
58 = 8E, (1 —1/Cy) (132)

when 7/C , € 1. In the discussion to follow, we will use the
full 5P solution and the approximate 6¢ solution [Eq.
(132) ], though we realize the approximation might not en-
compass all physically possible trajectories.

Caveats notwithstanding, the local 6P§ and € solutions
indicate the following general behavior. If {5 = 0, then tra-
jectories approaching (&, P _) will have |6€ | decreasing
with 6P§ increasing. Conversely, trajectories approaching
&, = mwill have |8€ | increasing with 5P§ decreasing. This
behavior in the vicinity of the singular points is consistent
with the many numerical solutions of the equations of mo-
tion we have examined, and is similar to that found near the
unstable hyperbolic fixed points at ( § B Pg ) when |/| = 2.
We cannot, however, deduce that (£5, Pg ) is a fixed point
for |/ | = 1 using the local analytic solutions because the same
problems exist in taking the limit 8,0, 5P§ —0asdid in
evaluating Eq. (124). In fact, numerical solutions of the full
equations of motion indicate that, as trajectories approach
the point (0, P ) values of d§ /dt can become very large.
The rate of change of the fast angle @ becomes large also and
the ratio of the fast angle to slow angle variation becomes of
O(1), stretching the validity of the resonance approxima-
tion. It is this rapid evolution of £ near the singular points
that causes the convergence problems for the QMAP (Sec.
IITA).

We will sidestep the issue of the precise characterization
of the (£, P,) points when |/| =1 and assert that these
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“unstable singular points™ [labeled with a “B” in Fig. 3(b) ]
behave in a manner similar to hyperbolic fixed points. The
contour connecting the two singular points separates trajec-
tories monotonic in & from those oscillatory in £and s there-
fore a separatrix {dashed line in Fig. 3(b)]. Full numerical
solutions of the equation of motion have verified that the
phase space structure throughout the small momentum re-
gime 1 resembles Flg 3(b) and the locations of the points
(£, PgA) and (&5, 55) are in good agreement with the lo-
cations predicted by the preceding analysis.

The range of parameters and initial conditions that pro-
duce oscillatory & behavior can be deduced by the method
that wasusedinthe|/| = 2 analysis. When |/ | = 1, the Ham-
iltonian H is monotonically decreasing (increasing) away
from the stable fixed point when 77, <1 (77, > 1) so that the
condition for oscillatory Eis H — Hy >0 (H—Hj, <0).As-
suming @ = w_, this condition simplifies to

sin &, <0 (133)
when 77, < 1 with a reversal of the inequality for 77, > 1. Ex-
panding &, in terms of the physical variables, the condition
for oscillatory £ can be written to lowest order as

G, (By:po) <0, (134)
where
G, = — (‘l—f—x—o~ — € sin [3’0)5111(/30 + 7, p’(’)
mc me
- (E—’i — €, COS ,6’0>cos(b’0 + 7, p}o) (135)
me me

Addressing the specific case of cold initial conditions, it can
be shown that, like the |/ | = 2 situation, all physically reali-
zable orbits are very close to the separatrix, 1i.e.,
P. /P, ~0(e*?). Unlike the situation when |/| =2, all
cold particle orbits will be monotonic for |/| = 1 when the

angle of propagation a <90° [Eq. (134)]. Oscillatory be-
havior can be found for some combination of parameters if
a > 90° or if the initial perpendicular momentum is nonzero.
Figure 5 illustrates this point with plots of G, versus initial
phase B, for several different values of p, when
Py = P = 0and the wave is circularly polarized. Numeri-
cal solutions of both the orbit-averaged equations of motion
and the full equations of motion have verified that the sign of
G, is an accurate predictor of the & behavior.

IV. SUMMARY

The objectives of this paper have been twofold: first, to
understand the physical mechanisms responsible for gener-
ating large kinetic energy gains in the cyclotron resonance
acceleration process; and second, to obtain a set of reduced
equations of motion that still allow the accurate determina-
tion of details of the particle orbits in the cyclotron reso-
nance regime.

The phenomenology of the acceleration mechanism is
addressed with the PMAP, a set of mapping equations jump-
ing the momentum and phase of the test particle from one
cyclotron orbit to the next. For each orbit, the change in
kinetic energy is proportional to the corotating component
of the wave electric field and is of the order of the quiver
energy or less. This small change in kinetic energy is the
result of either the corotation effect (/| = 1) or the Doppler
effect (|/|> 1) with the sign and magnitude of the change
depending on the relative phase of the wave at certain points
during the orbit. For the Doppler effect to be operative, there
must be a nonzero &, . Large changes in the kinetic energy
arise from the accumulation of the small changes over many
orbits. v

Crucial to the energy accumulation process and the long
time scale periodic behavior is a small shifting in the wave

0.010 7] _
/'/ \"\
v '~
s N
/‘ .\
,/‘ \
0.005 — e -~ N
/ -~ ~ N
7 RGN
..................... ~
N e ST
OO T ST T
NN L7
o'“ \ ~ N P s /
0.000 \ ~___-" , FIG. 5. The function G, versus initial
N\ ’ phase B, when |/| = 1 for various val-
A . /./ ues of initial momenta p,,/mc when
N, /s 7=08, €=3.16X1077°, a=45
N e and @ = w,_ for right-hand circularly
—-0.005 — TT Pyo/mc=0 polarized waves. When G, <0 the be-
- — — = p,/me=3.0x1073 havior of & is oscillatory.
——me- P/ mc=7.0x107°
-0.010 . ‘
0 m/2 ™ 3n/2 27
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phase ¢ (mod 27) of each cyclotron orbit. The shift in phase
has two energy-dependent contributions arising from the
wave interaction; one is a result of streaming along the back-
ground magnetic field caused by the acceleration of the par-
ticle parallel to B,,, and the other is a result of an increase in
the cyclotron period arising from relativistic effects. There is
also a constant parallel streaming contribution due to the
initial conditions. We find that, when 7, 5 1, the behavior of
the ¥ (mod 27) can be either monotonic or oscillatory, de-
pending on the value of the initial streaming term. It is a
limitation of the PMAP that we can only predict the exis-
tence of both monotonic and oscillatory phase behavior for
initial momenta p,/mc<O0(€) and not the exact functional
dependence. When 77, = 1, the energy-dependent terms can-
cel each other out and, at least for some ranges of initial
phase and momentum, the phase remains constant in the
small momentum limit. This allows for kinetic energy gains
of order of the rest mass energy.

It can be concluded from the PMAP analysis that the
magnetic field of the wave plays a significant, if not domi-
nant role in altering the relative phase of the wave of each
cyclotron orbit. Furthermore, the energy-dependent cyclo-
tron frequency plays a large role in altering the phase even
when the particle energies are far below the rest mass energy.
Clearly, it is not reasonable to ignore the wave magnetic field
or relativistic cyclotron frequency effects in studies of reso-
nance acceleration no matter what the particle energy.

Reduced equations of motion more accurate than the
PMAP are obtained by turning to a Hamiltonian formula-
tion of the problem. A set of mapping equations (QMAP) is
derived that jump the slowly varying canonical action P,
and angle £ over a 27 period of variation in the fast angle ¢.
The QMAP performs well when |/ | > 1 but runs into accu-
racy problems for cold initial conditions when |/ | = 1. Dif-
ficulties arise because the particle orbits in phase space pass
close to singular points where the rate of change of the slow
angle apparently diverges.

The QMAP difficulties are avoided by working with a
set of orbit-averaged equations of motion obtained from a
Hamiltonian that was derived using adiabatic perturbation
theory. In terms of the physical processes being modeled, the
orbit-averaged continuum equations and the QMAP are of
identical scope. However, with a continuous time variable
the orbit-averaged equations of motion can be numerically
solved with an arbitrary time step and therefore avoid con-
vergence difficulties near the |/| = 1 singular points. An ex-
tensive comparison of numerical solutions of the full equa-
tions of motion to solutions of the orbit-averaged equations
demonstrates the viability of the orbit-averaged approach.

Details of the orbit distribution in the phase space de-
fined by the orbit-averaged continuum variables (£, ?g)
[which have been equated to the QMAP variables (&, P)]
are examined for {/| =1 and |/| =2 in the limit of small
momentum. When |/| = 2, the structure is similar to that of
a one-dimensional nonlinear oscillator, i.e., a stable fixed
point between two unstable fixed points that define a separa-
trix. A general criterion for oscillatory £ behavior is derived,
which is a function of the wave parameters and particle ini-
tial conditions. For initially cold particles and w0 = 2w, we
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find that all particle orbits will be close to the separatrix and
that the existence of oscillatory behavior depends strongly
on the values of the initial phase, wave polarization, and
index of refraction [Eq. (119)].

The phase space structure when |/ | = 1 differs from the
{l]| = 2 structure in that there are no unstable fixed points.
Instead, there are unstable singular points where fixed points
might be expected. Though the time rate of change of Eisnot
uniquely determined at these singular points, analysis of the
behavior of nearby orbits suggests divergence. Numerical
solutions of the full equations of motion also show divergent
behavior in the vicinity of the singular points and indicate
that £ ceases to be a slowly varying variable. Despite the
singular nature of these points, they play much the same role
as unstable hyperbolic fixed points; they can attract and re-
pel orbits along different axes, and they define a separatrix
between orbits oscillatory and monotonic in £. Like the
|1} = 2 case, a general criterion for oscillatory behavior can
be derived. When @ = @, and the particles are initially cold
all the orbits are near the separatrix and all are monotonic in
& for angles of propagation 0°<a<90°. Only when the initial
perpendicular momentum is nonzero or a > 90° can oscilla-
tory motion occur, and then only for certain values of the
initial phase that depend on the wave polarization and index
of refraction [Eq. (134)].
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APPENDIX: SCALING LAWS FROM THE PMAP WHEN
n:#1

In this appendix, we use the PMAP to derive scaling
relations for the kinetic energy U, ., and oscillation period
7, associated with the resonance acceleration process. The
small momentum approximation to the PMAP is employed
and we assume cold initial particles withw = |/ |w.. Having
the benefit of the Paper I results, we know this to be a reason-
able approximation when 77, # 1.

We will work with the small momentum version of the
PMAP [Egs. (30)-(32)] in the following form:

A R _ . =1 l
o =d;; (€ 4"»‘2)(Pl ) cos (1//1. +lﬁ)’
me

mc 2
(A1)
Ap,, - L\ ]
i =d; 1. (€ +€z)("l‘) cos (Iﬁ; +—i'—|7'r‘),
mc mc 2
(A2)
where
Cdi = (=) LMD D] (A4)
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and the truncated phase has been defined to be
¥, = 9, (mod 27). The quantities €;, i = 1,2 are defined in
Eq. (10).

Consider the ratio of Ap,,, to Ay, arising from the map-
ping equations (A1) and (A3),

Ap,/me) _ dymy' e + &) (ﬁ)lf_s
Ay, 77'][1(1—-—17§)

Approximating the finite differences as continuous differen-
tials, we obtain the following differential equation:

mc

(AS)

i(pi)“]” = —(4— |1|)“’um¥5"(el jez)
d‘(ﬁ;z mc 7T|ll(1_7]z)
XCOS(E[’:. + —l—l-:i—ﬂ—) (A6)

Integrating this differential equation assuming p,, = 0, we
find with the appropriate choice of initial phase,

(4— \l|)ail|77¥1_l(€1 + &)
7|1 (1 —72)

2/(4— |1
plmax -

mc
(AT)

For |/| = 1, the maximum kinetic energy computed from

P lmax 18

Upax = 1.65| (6, + €)/(1 —72) | (A8)
and for |/ | =2, we find
Umax=277X|(El+62)/(1—77§)|' (A9)

For |/ | = 3, Upax ~O(€" ), the same order as the quiver en-
ergy. The scaling of U,,, in €, 7, and « given by Egs. (A8)
and (A9) is identical to that obtained from the HPP theory
(Paper 1). Even the constants of proportionality are fairly
close to those obtained from the HPP theory (1.26 for
{l|=1and2for|/|=2).

To probe the scaling of the long time oscillation period
Tp» WE consider the change in phase Ay, which can be either
positive definite (77, > 1) or negative definite (77, < 1) if we
ignore the unstable fixed point at p,,, = 0. The phase #;, will
then be either monotonically increasing or decreasing lead-
ing to alternating periods of acceleration and deceleration, as
we discussed in Sec. II C. Letting N be the number of orbits
that Ap,, >0 (which is equivalent to the number of orbits
that Ap,,, <0 by the symmetry of the map), we deduce from
the Ap,, mapping equation (41)

N

T= 3 |8y,

n=1
Substituting in the Ay, mapping equation (A3) we find the
sum relation

N 2
1=|z!|1_n§|z("’“).

n=1 \MC

. (A10)

(A1)

Defining (p?, ) to be the average value of p7, over the accel-
eration range of ¢, we can further reduce the sum relation
to
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1= |l|‘1——77§|N((pf,,)/m2c2)A (A12)
Since the acceleration process is cyclic, we can express
the average of p?, as a function of the maximum of p3,:

Proax = C{P1.)> (A13)

where Cis of order unity and, we hypothesize, weakly depen-
dent on €, 7, and a. Noting that 7, is the long time scale
oscillation period normalized to the wave period, ie.,
7, = 2|/ | N, we manipulate the reduced sum relation (A12)
to find

Umapr = C/I 1 - 77;2' | . (A14)
Using the previously derived expressions for U, [Egs.
(A8) and (A9)], the expression for 7, when |/| =1 is
found to be

7'pocl/|1——‘17§[”3|61—1—62 3 (A15)
and, when |/ | = 2, the scaling relation becomes

T, 1/, |€ + & (A16)

By depicting only a proportionality, we have neglected con-
stants of order unity and the C factor in the above 7, esti-
mate. The scaling of 7, with €, 7, and  are the same as that
derived from the HPP theory except for a logarithmic factor
that appears in the HPP expressions when |/ | = 2.

The agreement of the PMAP and HPP scaling laws, at
least to order unity when 7,51, demonstrates that the
PMAP does reasonably represent the main features of the
physical processes that underlie the resonance acceleration
mechanism when the momenta are small compared to mc.
We reiterate, however, that the PMAP is limited and does
not explain very well the initial phase and momentum de-
pendence (Sec. IT A).
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Relativistic test particles interacting with a small monochromatic electromagnetic wave are
studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged
Hamiltonian is derived which retains the effects of passage through resonance. Two distinct
regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive
resonances is random, and multiple resonant interactions lead to a random walk in phase space.
In the other, adiabatic limit, the phase angle is determined by the phase portrait of the
Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore
in the energy and pitch angle), so that the cumulative effect increases directly with the number

of resonances.

I. INTRODUCTION

Charged particle motion is considered under the com-
bined influence of an inhomogeneous background magnetic
field and an electromagnetic wave. When there is a reso-
nance between harmonics of the cyclotron frequency and
the Doppler-shifted wave frequency, even a weak wave can
significantly perturb the particle motion. This process has
been studied by many authors, particularly for radiation
belt particles in the Earth’s dipole field, where phase
bunching leads to further, coherent whistler wave emis-
sion, and pitch angle scattering into the loss cone leads to
particle precipitation.l‘5 These effects have also been stud-
ied in laboratory experiments, especially in the context of
electron cyclotron heating applications.f"8 For sufficiently
large amplitude waves, large changes in the particle energy
and pitch angle are possible due to both stochastic®™!! and
coherent, surfatronlike'? mechanisms.

Ginet and Heinemann"’ and Ginet and Albert'* stud-
ied in detail a relativistic particle interacting with a small-
amplitude electromagnetic wave propagating at arbitrary
angle to the background magnetic field B,. A two-
dimensional, resonance-averaged Hamiltonian was devel-
oped which allowed simple and accurate determination of
the motion. The major restriction was to a constant By, so
that the effect of passage through resonance was not in-
cluded. In the present paper, the spatial dependence of the
resonance condition is considered as a crucial feature of the
dynamics. This type of behavior has also been studied for
nonrelativistic particles and electrostatic waves by
Shklyar,!® in connection with observed proton precipita-
tion from the radiation belts. He considers the case of
" strong inhomogeneity, and derives a random walk for the
appropriate particle canonical momentum, assuming the
relevant phase angle at resonance to be randomly distrib-
uted over (0,27). Here, connection is made with that anal-
ysis, using a time-dependent pendulum model. It is also
shown that in the opposite, weakly inhomogeneous limit,
adiabatic considerations apply, giving a different expres-
sion for the change in canonical momentum. The use of
adiabatic invariants is similar to the methodology used by
several researchers to consider the power absorbed from a
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z-dependent electromagnetic wave perturbation of finite ex-
tent, propagating perpendicular to a constant background
magnetic field.!®!” The results obtained here find the phase
angle restricted to a narrow range about a deterministic
value, leading to a systematic change of the momentum, so
that after a series of resonant interactions the cumulative
change can be much larger than for the nonadiabatic ran-
dom walk. Numerical simulations check the resonance-
averaged Hamiltonian against the full equations of motion,
and demonstrate the different resonant phase-angle ranges
and cumulative effects of many resonances in the two re-
gimes.

II. THE EQUATIONS OF MOTION

For simplicity a slab model is used, with background
magnetic field determined by the vector potential
Ay= —yByg(z)%, where the inhomogeneity function g sat-
isfies g(0)=1, g'(0)=0. The resultant By=(0,
—yByg', Byg) satisfies V+-B=0 exactly for any g. The elec-
tromagnetic wave is specified by

A,=A, sin &, +4, cos $i&, — A sin P8 , (1)

b= f k-dx—ot. (2)

A constant k; is used, and k" is considered only as a
function of z because the perpendicular scale length over
which it changes is large compared to the Larmor radius p,
although k; p is taken ~O(1). With k=ky & +k, & ,
the angle between k and Z is @ and between €, and X is 3;
thus & =2, & =cosPX+sinBy, and &,=¢ X§

= —sin BX+cos B¥. In the homogeneous situation, the
(x,y) axes could be rotated to set B=0 without loss of
generality, but here the inhomogeneity introduces a phys-
ical distinction between x and y. Note that the decompo-
sition of k into k| and k, is done relative to By at z=0;
g’ (2) is tacitly assumed small enough that « and B do not
change much over the distances involved. Rigorously in-
troducing curvilinear coordinates and their associated
Jacobian factors, as done by Shklyar,'® leads to the same
results as those obtained below.
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The relativistic Hamiltonian of the particle motion in
the combined fields is given by

5 P—gA/c\?
H(Px;t)=mc 1+(7) ,

where P is the canonical momentum and A=Ay+A,,. De-
fining Q= |g| By/mc and s=¢/|g|, a canonical transfor-
mation is made from (x,P,.y,P,,z,P,) to_(X,Py,$,1,2,P,)
via the generating function F(x,y,¢,Py,z,P,):

1 sPy \? xPy
) ( Qg) tan ¢+ mQg
which is effectively the same as the one used in Refs. 10

and 11 with Q replaced by Qg. In the new variables, the
Hamiltonian 1s given by

(3)

F=mQg +zP,,  (4)

l
| Q
H= \"1+2—g1+Q2+2 [2——](—61 sin ¢ cos &,

(5)

where Q=P,— (g'/g)sin é(Icos J—spf’x) and p is de-
fined in Eq. (9) below. (Actually, Q is just P,/mc.) The
wave amplitudes are expressed by €=[q|4; /mc?,
i=(1,2,3). The overbarred variables (X, PX,¢ I, sz,t) are
the normalized quantities

+5€5 cos ¥ sin @) + 2s€3P, sin ¢,

(wX/c,Py/me,b,wl/mctwz/c,P,/mc,wt)

and H is H/mc*. From now on, the overbars will be sup-
pressed. The higher-order terms (€+6)sin’® Y+ €5 cos® ¥
in Eq. (5) have been dropped, and P, has been used instead
of the full expression for Q in the €; term. To zeroth order
in €, I is equal to the usual adiabatic invariant y times
constant factors.

After using the familiar Bessel function identity

2 J(a)exp(inB)

n=-—ow

exp(ia sin 0) =

and expanding to first order in ¢;, the Hamiltonian takes
the form

H(XaPquSyI,z’Pz;t)

g Icos¢—spPy

a,
=Y——g—sm¢ e R 2,rsmé',,, (6)
where
Q 172
T=(1+2;gI+P§) , (7
=— I[(El—fz)Jn 1+ (€1+€)n41]
+2SPZE3J,,, (8)
J 2ot
Te=Tanp) p=y2qG. 1 9)
§,,=5+sn¢1, ¢1=¢+SB, (10)
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(11)

o
=X+ f 7, a’z~t~s77y?lEPX,

and 7, =K(xy¢/@ is the index of refraction. The
quantity Y is the canonical analog of the usual relativistic
factor y.

In the neighborhood of the /th resonance, all terms in
the sum except n=/ can be dropped by averaging over the
rapidly oscillating cyclotron phase ¢, which also eliminates
the term proportional to g'/g. Then constants of the mo-
tion, ¢,=Py—nH and ¢;=1I-s/H, can be used to elimi-
nate Py and P;:

(12)

PX C1+ ([ Cz)

I—c\? Qg
) —1-2—1, (13)
sl @

}
&wﬁ,&umsw

where o, is the sign of P,. Here, P, is given neglecting
terms of order €, which will be adequate. To this approx-
imation, Y and q; are functions only of / and z. A closed set
of equations of motion can now be written as

dI
5=

¢ Uznfo+slg{_l+s 2 p g dz
T oY hag ¥ gd

a;
—cos &, (14)

—sl e

(15)

dt z+0(€)

dz o.P
E—T+0(E),

(16)
or, following Shklyar,
dl
5=

dg§
=

o, — 17
—s UZECOS &, (17)

o, Po+5IQg/0—Y
a.Po

The resonance condition is d§/dz=0, which is equivalent
to lowest order to the familiar condition o— kv,=sIQ/y.
For an electron in /= —1 resonance with a right-hand cir-
cularly polarized wave propagating along B, the standard
scenario for whistler emissions in the magnetosphere,'™
&+m/2 is the angle between v, and the wave magnetic
field B,,.

To a good approximation, this nonautonomous system
of two ordinary differential equations can be derived from
a Hamiltonian with 1} degrees of freedom, with z playing
the role of time:

+0(E) (18)

w
S‘l’]y .Q.

K(1,6;z) =Ky(1,z) +€K,(1,z)sin &, (19)

%uyﬂ{mwmﬂgqyfq)

MMy
2

s ¢ (1 ¢;)?—sloPy(1,2),

(20)
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a;
K1=slazm , (21)
where an explicit factor of € has been introduced in Eq.
(19) as a reminder that g; consists of terms proportional to
€(1.2,3)- The location(s) of resonance can be found approx-
imately from (8Ky/0I)(1;,z,) =0, where I; is the initial
value of 1. The equation for d&/dz deriving from K does
not agree with Eq. (18) in the O(e) terms, but this is
acceptable by virtue of the following argument. It is only
important to evaluate dé/dz accurately near resonance,
since otherwise the deviations in I are small and average to
zero. Near resonance, where d&/dz~ (d*6/02") e (2—Zyes),
one has

d¥ (3 dI 3 dEd\dE ”
Ef‘(a_z““EEf’EéE)E' (22)
Using d&/dz=(3Ky/dI)+€(3K,/dI)sin§ to define

K,(1,z), the last two terms in Eq. (22) have the estimates
dl 0 d§ 3K,

EﬁZ:€K1717°°S§+O(€2)’ (23)
dé 3 d¢ 9K, 9K
E;gggz'z _B—TOG_IZCOS E+0(€Y). (24)

Now, since near resonance (3Ky/dI) is O(e) while K,
(8°K/dI?), and (9K,/dI) are O(1), K, only affects d§/dz
through a term small by a factor of €. Therefore, the form
of K, does not appreciably affect the dynamics and may be
replaced by K, so that Egs. (19)-(21) may be used.

Writing the normalized relativistic kinetic energy of
the particle in terms of the mechanical (noncanonical)
momentum, U = \/1+(p/mc)3Z — 1, expressing this in
terms of the transformed variables, and evaluating P, via
Eq. (13) yields U= (I—c,;)/sl+O(e). This shows the di-
rect relationship between a change in I of 81 and the cor-
responding 8U=251/sl. Similarly, changes in the pitch an-
gle £ induced by changes in I can be found through
sin? E=v? /¥ =2Qgl/0[(U+1)*—1].

IIl. ANALYSIS

Shklyar considers the strongly inhomogeneous case
where, by definition, the first term on the right-hand side of
Eq. (22) dominates the other two. Conditions for this to
hold will be arrived at below. In this case,

a 2 _ 621(0 25
§~§rs+2 (?—Zr&) , 4= (3231),5 ( )
and the change in I across the resonance is
(6[)1=J —€K1 COSgdZ
27 ™ '
= —eK, mcos(gmiz), (26)

where =+ is + if @> 0 and vice versa. Taking the resonant
phase £, uniformly random over (0,27) yields a random
walk for the action I. Since both the energy and pitch angle
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can be expressed as functions of I plus terms of order €
oscillating with frequency 2, they, too, undergo a random
walk.

In the other limit, when the inhomogeneity term in Eq.
(22) is small compared to the last two terms on the right-
hand side of (22), which taken alone represent one-degree-
of-freedom motion, it is worthwhile to consider contours of
K(I,£;z) in the (I,£)-plane for fixed z. The picture is like
the standard one for a plane pendulum, with an island of
closed orbits inside a separatrix, outside of which lie open
orbits. At any z, the location of the fixed points is given
approximately by (9Ky/8I)(Ipe,2) =0, with §=7/2 and
— /2. In the homogeneous case, motion would be along a
curve of constant X, and these contours would be station-
ary. The z dependence has two related effects: The particle
trajectory is not strictly along lines of constant K, and the
entire picture of K contours moves with the passage of
“time” z, as described by the above estimate for I (z).

Intuitively, when the island is at large I from the par-
ticle, the particle approximately moves at constant /=1;
and d€/dz~3K,/dI. As the island slowly approaches /;,
the particle is affected, still moving roughly along the
curved K contours while slowly crossing them. The island
edge, or separatrix, guides the particle towards the x point,
which is a resonance since dé/dz=0 there; therefore, the
particle should cross the resonance near §=§. Following
the separatrix leads to a change in I of order the island
width, which is O( \/E). In more detail, the oscillation d§/
dz is usually much faster than the speed of the x point so
that the particle almost follows a K contour, but near the x
point d&/dz goes to zero, so that the particle is stationary
while the island structure passes through it. As soon as it
does, the particle resumes its fast motion at nearly constant
I. This is illustrated numerically in Sec. IV below.

To be more quantitative, X is Taylor expanded in 1
about I,.(z) to get the model Hamiltonian

G

M1gz) =7 I-L(2)]*+F,sin§ (27)
with G,=(3°Ko/I%) (I;es:2ces)s Fr=K1(TpesZres), and
I..(z) given approximately by (9Ko/dI)(/;,z)=0 as
above. This form for M neglects the small, slow deforma-
tion of the separatrix shape. Defining o to be the sign of
F, and oy to be the sign of G,, a canonical transformation
from (L&) to (P,Q) via the generating function
F(E,P)=P({+0p0m/2) yields

M(P,Q;z) =Uc(g [P— P, (z)]*—F cos Q) (28)
with F=0pF,>0, G=05G,>0, and P, (2)=1.(2).
Then, M (P,Q;z) is clearly the Hamiltonian for a pendulum
with linearized frequency wy, = \/1—7?}' and island width
W = 4\/F_/C_;, moving in P with time z, with o point at
Q=0 and x point at Q= . The sign o only affects the
sense of the (P,Q) motion.

As above, the strongly inhomogeneous analysis yields
8P = —0gF \2m/|GP.)| sin(Qyes + 7/4), where = is —
if 0GP > O. In the other limit, it is valid to use the adia-
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batic invariant .7 = § PdQ/2 to calculate 5P. When the
particle is outside the separatrix .7 has the form

T =P (2) T o(k), (29)
4 |F M
70(K)=-1; \/%Kg(l/K), 2K251+5’?’ (30)

where & is the complete elliptic integral of the second
kind. The argument k& is greater than 1 outside the separa-
trix, less than 1 inside, and equal to 1 on the separatrix.
The choice of sign in the expression for .7 is critical, and
is different before and after crossing the resonance. It may
be determined by noting that for z— + o, the island is far
from the particle so P is approximately constant and
T =P, while I j— |P—P,(z)]. For Eq. (29) to be sat-
isfied, if P, (z) increases with increasing z, + must be —
for z— o and + for z— — «o. Thus 7 tends to the value of
P for large positive and negative z, while suffering a jump
as the particle crosses the resonance, where the adiabatic
condition is violated. The jump in P is therefore equal to
the jump in J across the resonance. This may be esti-
mated by evaluating .7 just before and after the particle
crosses the separatrix, where k=1. Thus, for P.(z) in-
creasing with z,

SP=P(z=w)—P(z=— )
=6‘7_:[Pres(zr5)”y0('(=1+)]

- [Pres(zres) +3_0(K= 1t )]

16
A A

As throughout, P, (z) refers to the resonant value of P for
a given z; P, (z.,) is that value actually attained by the
particle when it hits the resonance at z,,. Evaluating
P, (z) as P (z,) assumes that P, (z) does not change
much in the time it takes the particle to go across the
island.

For P, (z) decreasing with z, the jump in P has the
opposite sign. The corresponding change in 7 is just

(31)

81 il i 32
( )2"’ —0, -77_' 6; > ( )
where o, is the sign of dI_./dz, which itself is given by
dl.., Kzl 5
dz = FKoor (33)

The magnitude of (87), is just 2/ times the width of the

island, confirming the intuitive analysis presented above.
It is interesting to note that, from Eq. (22), the con-

dition for adiabatic behavior to hold, leading to (87),, is

&K,/ 0z 3
= |K (8Ky/3I%)
while (8I), applies in the opposite limit. Ignoring con-
stants of order unity, & is also seen to be essentially the

ratio of the island oscillation period, 27/w, to the time it
takes the island to move across its own width,

<1 (for adiabaticity), (34)
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W/(dl,./dz). This is exactly the quantity one would ex-
pect to control the adiabaticity of the motion.

The magnitudes of the two expressions for &/ have the
ratio (81),/(81); = \/—@ Therefore, the applicable 67 is
always the smaller of the two. A harmonic mean,
[1/(81),+1/(81),]~", might be a convenient composite
estimate for the jump due to a single resonance. Crossing
many resonances, however, brings in an important differ-
ence: The strongly inhomogeneous mechanism involves a
random phase, which leads jumps at isolated resonances to
combine diffusively, as in a random walk, while for the
adiabatic case the sign of the jump in action is systemati-
cally determined by the motion of the resonance island. If
this has the same direction for many consecutive reso-
nances, the jumps in 8/ add directly, leading to much
larger cumulative changes in / and in quantities that de-
pend on I, such as the particle energy and pitch angle.

It can also be seen that & is related to the ratio of
wave-particle interaction times for the two mechanisms.
For the strongly inhomogeneous case, the interaction time
is estimated!® from Eq. (25) to be 7y=v; 1. g2 while
for the adiabatic process t,=v; '+ W/(dl, /dz), so that
R = (71/72)2. Therefore, Eq. (34) implies that of the two
mechanisms, the applicable one is the one with the longer
interaction time. Note that this concept of interaction time
is not the same as the “effective time,”'® which might be
defined here as vz“1 - (61/¢€).

Next, we make some simple estimates of these expres-
sions in terms of physical variables. Using the Oth order
constancy of energy and 7 leads to

PKy\ -1

(aT)zT (39
TKo) 1 1 It e)]|E 36
(@) = [ ez 5o

where p is the mechanical momentum, normalized by mc,
and g’/g can be interpreted as the normalized inverse scale
length (wL,/c) . Estimating K, is more difficult because
the Bessel functions involved, especially for large index, are
sensitive to their argument, which is approximately &, p. It
can be written as '

K =slo{—3tan’ §[ (e, —€)J_ 1+ (€1 +€)J111]

+se3J} ‘_—2510'26.71. (37)

Using these estimates to approximate % in Eq. (34) gives
1
1—7np, l+£ tan® ¢ ,

g
— . (38)
eJ(nt—1) g

As is well known, for large |/|, J;(x) is small for |x|
< |I{, quickly reaches its maximum near |x|=|/|, and
oscillates with slowly decreasing amplitude for |x|> |/].
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FIG. 1. Thel resonance function .% and action 7 of a test particle accord-
ing to the 150 Hamiltonian K. As the particle crosses the /th resonance,
indicated by ¥ =/, I takes a large jump.

For weak waves €<g’/g, but the bracketed expression can
be small and often 7,> 1, so that the adiabatic condition
Z <1 can be met.

With the above approximations, the change in action
can be expressed as

—slo €, 27p,
(61 m it i B, (39)
V&'/g \1-np(1+itan*§)
sI 8 |elp, 40)
( )2~_“0'r; 17?—1 . (

In terms of 8I, the change in energy U (normalized by
mc?) and pitch angle ¢ are given by 8U=4I/sl and
8(cos &) =[(np—cos £)/p*1(81/s]).

IV. SIMULATIONS

Numerical simulations were performed of both the re-
duced Hamiltonian K(I,£;z) of Eq. (19) and the full
H(X,Py,I,$.2,P,;t) of Eq. (5). A right-hand circularly po-
larized wave was used, with €;=¢sina, €=¢,
€3=¢€; cos a, amplitude €= 1077, @=30°, B=0, and con-
stant index of refraction 77=50. A positively charged par-
ticle was used, with normalized initial energy U=3 X 1074
and pitch angle £{=35°, and w/Q=70. The background
field inhomogeneity function was taken to be g=1+4g;2,
with various values of g; and initial particle gyrophase ¢g.

Figure 1 shows the behavior of a typical particle across
the /=10 resonance, according to the 13D resonant Hamil-
tonian K(I,&z) with g,=10"% This corresponds to
% =0.4, which moderately satisfies the condition for adi-
abatic behavior. The action [ is seen to oscillate rapidly
about a constant value except for a large, negative jump
when the particle’s parallel motion carries it through a
resonance. The occurrence of a resonance is identified by
dKy/0I=0 or, in terms of physical variables,
Z(2)=s(w/Qg)y(1—nu,/c) attaining an integer value /.
Figure 2(a) illustrates the adiabatic process in the (7,£)
plane. The instantaneous location of the particle is shown
for several values of z very near resonance, along with the
separatrix of K(I,£,z) corresponding to the first and last z
(solid and dashed curves, respectively). The separatrix
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FIG. 2. A series of snapshots of the particle position in the (1,§) plane,
for the adiabatic regime discussed in the text. (a) Separatrices are drawn
corresponding to the first (solid curve) and last (dashed curve) shown
particle positions. (b) The same particle positions are shown in the frame
of the moving island.

moves up as z advances, and the particle initially moves to
the right. For earlier z, when the island is far below, the
particle is undisturbed and moves left to right at nearly
constant . As the island nears, the K contours become
more and more distorted, leading to bigger oscillations in
the I of the particle. The island eventually moves past the
particle when the particle is near the x point, changing the
particle’s adiabatic invariant and mean [ value. The island
continues upward, leaving the particle to resume nearly
undisturbed periodic motion at its new [ value. Figure
2(b) shows the same particle positions in the frame of the
moving island, clearly showing how the particle crosses the
island near the x point.

The issue of phase trapping has not been addressed.
Occasionally, a particle will cross into the island far from
the x point, and by conservation of an adiabatic invariant
inside the island, will remain trapped for a long time before
managing to cross out again. During this time both the
island and particle move upwards in 7 together, so that the
net change in the particle I can be positive and very large.
This typically happens for 0, 1, or 2 out of 24 particles in
an ensemble of different initial gyrophases, for both the
11D and 3D Hamiltonians. This exceptional behavior may
be related to the time-dependent deformation of the island
shape, since it is not observed for the pendulum Hamil-
tonian of Eq. (27). The occurrence of this trapping should
diminish as the adiabatic condition becomes more strongly
satisfied. It bears more investigation, since it shows how
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FIG. 3. The same as Fig. 2, but for the strongly inhomogeneous regime.
(a) Unlike in the adiabatic regime, the particle crosses resonance far from
the island’s x point. (b) The same motion shown in the frame of the
island, which is moving upwards fast enough that the actual change in 7,
shown in (a), is positive.

particles can become phase entrapped even by a weak,
constant-amplitude wave. (The more common picture is
that the particle becomes trapped by moving into a region
of space where the wave strength increases.) Here, how-
ever, this study is deferred.

Figure 3(a) illustrates the passage through the /=10
resonance  with  stronger  inhomogeneity,  with
g, =>5X10"%, corresponding to # =2.0. Because the rising
of the island is faster than the particle motion, the island
crosses the particle’s I without concern for the particle’s &.
The influence of the H contours once the island is past can
even lead to an increased value of the particle 7, as shown.
Figure 3(b) shows the particle motion in the island frame.

An ensemble of particles with 24 different ¢, values 15°
apart were simulated, according to both the full A and the
resonance averaged K. Because K is a good approximation
to H only near resonance, the initial phase £ from the X
simulation will not correspond to the value from the H
simulation; only ensembles of initial £ values, or equiva-
lently ¢, values, can be compared. The resulting changes in
I and resonant £ values are shown in Fig. 4(a) for the
adiabatic regime. An “X” marks the theoretical estimate of
(81/W=2/m, £=3m/2), where W is the island width.
Two points from the ensemble of K runs that exhibit phase
entrapping have been omitted. With this proviso, it is seen
that the particles go through resonance with £ near the
x-point value, and also that the sign of 87 is negative in
almost each case. The same results for the strongly inho-
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FIG. 4. The change in action across a resonance versus the phase angle at
resonance, for an ensemble of initial conditions, according to both the
35D and 15D Hamiltonians. (a) In the adiabatic regime, the results clus-
ter around the analytical estimate, indicated by the “X”, with most values
of 81 of the same sign, and phase angle near the island x point. Two
particles that became phase entrapped are not shown. (b) In the strongly
inhomogeneous regime, all values of £ are present, and positive and neg-
ative 87 are about equally likely. The solid curve shows the analytical
estimate.

mogeneous regime are shown in Fig. 4(b); the sinusoidal
dependence of 87 on £ expected from Eq. (26) is shown by
a solid line, with the numerical results in close agreement.
In particular, positive and negative changes in 7 are almost
equally likely.

Figure 5 shows the change in the particle’s action,
I—1I,, as a function of time for a 6D run, carried out long
enough to show several consecutive passages through res-
onance (identified by integer values of .%”). In the strongly
inhomogeneous regime, shown in Fig. 5(a), the change in
I can have either sign, so that I (and therefore energy and
pitch angle) executes a random walk. Figure 5(b), show-
ing the adiabatic regime, illustrates changes in 7 with the
same sign across several resonances, leading to a large cu-
mulative effect.

V. SUMMARY

Resonant wave-particle interactions have been consid-
ered in the presence of spatial inhomogeneity of the back-
ground magnetic field, from a Hamiltonian point of view.
The reduced, or resonance-averaged, Hamiltonian derived
depends only on one action-angle pair of canonical vari-
ables, plus the distance along the field line z, which plays
the role of time. Since the waves are perturbatively weak,
the parallel motion of the particle neglecting the wave gives
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FIG. 5. An illustration of several consecutive resonance crossings, ac-
cording to the S%D Hamiltonian. (a) In the strongly inhomogeneous case,
81 undergoes a random walk. (b) In the adiabatic regime, the changes in
I have the same sign.

the correspondence between z and time. Using constants of
the motion, all other quantities can be expressed in terms
of the canonical action and angle, including the particle
kinetic energy and pitch angle. Two limiting regimes of
behavior were found, depending on the strength of the field
variation, and the reduced equations gave results that
agreed with the full Hamiltonian in each case.

The reduced Hamiltonian was shown to be accurately
modeled by the standard pendulum Hamiltonian, modified
so that the location of the separatrix depends on time, at a
rate determined by the strength of the field variation. A
single parameter was found that differentiated the two re-
gimes, namely the rising rate of the separatrix compared to
the oscillation frequency about the island center [Eq. (34);
see also Eq. (38)]. When this parameter is small, the par-
ticle motion is adiabatic except while crossing the reso-
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nance, and computing the adiabatic invariant long before
and after the resonance crossing gives an expression for the
change in the action. The sign of this change depends only
on the background parameters, since the phase canonical
angle is constrained to be in the vicinity of the x point, as
illustrated in Figs. 2 and 4(a). In the other limit, the time
dependence of the reduced Hamiltonian is strong enough
to destroy the adiabatic invariant even far from resonance,
giving a different expression for the change in action, as
calculated by Shklyar.!> An important aspect of this ex-
pression is that it depends sinusoidally on the phase angle,
which is unconstrained over the range (0,27). Therefore,
considering the effect of n independent resonant interac-
tions, the action undergoes a random walk, with a mean
displacement proportional to \/; In the adiabatic case, on
the other hand, the change in action is proportional to 7,
leading to larger changes as the result of many consecutive
resonant interactions.
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Quasi-linear pitch angle diffusion coefficients:
Retaining high harmonics

J. M. Albert

Center for Electromagnetics Research, Northeastern University, Boston, Massachusetts

Abstract. Diffusion coefficients for electrons pitch angle scattered by plasmaspheric
hiss are reconsidered, as given by quasi-linear theory, overcoming practical problems
in keeping high cyclotron harmonics n. Upper bounds are used to identify ranges
of latitude, n, and wave-normal angle which give only negligible contributions, so
that the detailed computation of these values may be avoided, resulting in large

savings of computational effort. A simple way of obtaining precipitation lifetimes
from the diffusion coefficients is also given, using a shooting method. The lifetimes
and steady state fluxes are computed, leading to shorter lifetimes and lower fluxes
than previously reported, for energies above 500 keV and Mcllwain parameter L

greater than 3.

Introduction

Pitch angle scattering of radiation belt electrons by
plasmaspheric hiss is of continuing interest. Although
two decades old, the formulation of Lyons et al. [1972],
in terms of a bounce-averaged quasi-linear pitch angle
diffusion coefficient [Lyons et al., 1971], remains stan-
dard. A key innovation of the earlier work was the
retention, in principle, of all harmonics to account for

resonant interations at all latitudes. However, the nu--

merical results included only a limited number (namely,
-5 < m < 5), since even with a drastically simplified
dispersion relation for the whistlers, the evaluation of
these diffusion coefficients can be computationally ex-
pensive (L. R. Lyons, personal communication, 1993).
Here some analytical techniques are used that reduce
the computations to manageable levels, making it fea-
sible to include as many cyclotron harmonics terms
as required to obtain any specified accuracy. Keeping
more harmonics naturally leads to larger diffusion co-
efficients. It is also shown how to use them to obtain
precipitation lifetimes, using a shooting method. Life-
times and the resulting steady state fluxes are recom-
puted with the full range of cyclotron harmonics, for a
specific set of wave parameters, leading to shorter pre-
cipitation lifetimes and lower flux levels.

The expressions for the diffusion coefficients are dou-
ble integrals over latitude A and wave-normal angle 6,
summed over all cyclotron resonance numbers n, plus
the Landau term n = 0. At each A, only a few har-
monics contribute, and only for restricted ranges of 8;
thus there can be much wasted computation of terms
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in regions where their contributions are negligible. Be-
cause the interactions take place for wide and overlap-
ping ranges of A, n, and 6, it is unsatisfactory to try
to simply estimate which terms seem to be unimpor-
tant, in an ad hoc fashion. Instead, by exploiting the
tractable form of the functions used to model the waves,
analytical upper bounds can be used to identify regions
of integration whose results are guaranteed in advance
to be less than a given value, and rigorously reject them.
Computer time is then spent only on significant contri-
butions. The effect of the additional harmonics is found
to be significant for the outer electron belt, at energies
above 500 keV.

Upper Bounds

With a few additions, the underlying physical for-
mulation and notation are the same as that of Lyons
et al. [1972]. Wave energy is distributed in frequency
w as a Gaussian centered at w,, with width éw and
lower cutoff wrc, and distributed over 6 with weight
exp(—tan®8/tan?40,,). The Earth’s magnetic field is
represented as a dipole, with strength By = Begh(A) =
(0.31G/L3)h(}), where L is the usual Mcllwain parame-
ter and A()) is the dipole function (1+3sin® A)Z/ cos® A.
The local pitch angle « is given in terms of A and the
equatorial pitch angle ag by sin® o/ sin® ag = h()). The
quantity Q. is the magnitude of the cyclotron frequency
of a nonrelativistic electron and has the value {2, at the
equator, so that Q. = Q.q A(A). A useful quantity is
P m, givenby P2 =mc(Qe/w)(B§/4nN), where m,
is the electron rest mass and the cold electron density N
depends on L only. This is approximately the parallel
momentum P required for primary cyclotron resonance
with a wave of frequency w,, and § = 0. P,, is further
defined as Py, at A = 0, 50 that P}, = P R2()). In
the whistler dispersion relation, all terms of order w/Q,
and ;/w have been dropped.
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23,742

The diffusion coefficient D{cp) is computed via rel-
ativistic quasi-linear theory, for fixed energy E, L, and
ag. It is written as

Am
Diao)= [ dx T Dah) Walh
0 n#0
Am .
v [T abwwe, o
0
where the mirror latitude A, is given by h(Am) =

1 /sinh2 ag. Wo and W are integrals over 0, and D
and Ds are independent of 6, given by

(5=
V3

cos” A { }
cos asin® ’

T () cos? ag @)
W, and Ws are defined below. T(ap) = 1.30—0.56sin ao
is an approximation to the mirror latitude dependence
of the bounce period, and W is a normalization integral
that depends only on the wave parameters wm, wrc, bw,
and 6,,:

- W
bw
oe 4 -1
/1 dz exp[ (tan2 ow)}
Upper bounds on W are used in the following way,
where W refers to either Wy or Wa3. Regardless of its
details, any conventional numerical algorithm for per-
forming the integrals requires evaluating W many times
at different values of A and n, and summing the results
weighted by some 6. Because W is itself an integral
over 6, these evaluations are very time-consuming. If W
is known in advance to be less than some appropriate
minimum value Wiin = Dmin/ D68, one can simply set
it to zero and proceed to the next value of A. Initially,
one sets Dmin to be less than some physically reason-
able minimum value of interest. It is then updated after
each nonzero increment to D{ap) to be no more than a
small fraction, say 10~4, of the value of D(ag) obtained
so far. Actually, instead of Dmin/ D6, it is convenient
to use the more conservative value Wiin = Dmin/ Din.
The upper bounds will be presented in some detail.
The reader may then use them to reperform the cal-
culations for different particle energies, etc., and using
different wave parameters, which may vary greatly with
circumstances.

(3)

Cyclotron Terms

For cyclotron terms, because of the simplified disper-
sion relation used, the resonant frequency has the form
w = wysech, where wa(A) = wm(nNPym P||)2. W5 can
be expressed as an integral over z = sec#:

Wy =, /% e® /;:n dz z% exp |-B(z — 20)*|®n(z),
(4)
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where 8 = (wo/6w)? + 1/tan® 6y, 2o = wmwa/B(6w)?,
and A = B(1 +22) — [(wm/6w)? + (w2/6w)?]. The lower
limit Zmin is the larger of wyc/w2 and 1, which ensures
that w > wrc.

The term ®,, is defined as a combination of Bessel
functions of the first kind, namely &, = [cos? % Jnt1 +
sin2-g- Jn_l]z, with argument ntanatand. Of course,
to do the integration, ®, must be expressed in terms
of z. Note, however, that since the absolute value of
each Bessel function is less than or equal to unity, so
is ®,. Setting &, to 1 thus gives an upper bound on
Wo. Furthermore, as z is integrated out to infinity,
the Bessel functions will go through their peaks, which
decline from unity slowly with large z, so that the upper
bound may not be a large overestimate. Physically,
the simplified dispersion relation allows a resonant wave
frequency for every possible value of wave-normal angle,
but there is significant wave energy only for w greater
than wrc and within éw of w,, and for @ less than 0.
The upper bound accounts for these energy weightings
but not the efficiency of the particle coupling with each
mode, which is described by ®,,.

This upper bound is itself bounded above by an in-
tegral that is expressible in closed form in terms of
standard special functions. The resulting expression for
W2UB/V2 is

F(%’ ymin2), Y0 < Ymin
T'(2, 43) + vmyolerf(yo) — erf(Ymin)], %0 > Ymin  (3)

where yo = B2Zo, Ymin = B%(Tmin — Z0), and V2 =
Vwa/2m €2/ B%i. While yo must be positive, Ymin
need not be. For n large enough that wy is larger than
wLe, 2wm, and wy, + 8w, the upper bound is less than
(6w/2wm)3/? exp|[({wz — wm}/6w)?]. This gives a A-
dependent upper limit on the number of harmonics that
must be considered: W is guaranteed negligible for |n|
greater than

P

Nmax =

2 oel () ] ©

Furthermore, it is straightforward to derive a general-
ization of (4) for finite subintervals of x.

ll,m

Landau Term

For n = 0, the resonant frequency takes the form w =
ws cos @, where w3(A) = wm (P /7P| m)?(Qe/wm)? and

can be written as wéo) cos® a/g()), with w:(,,o) indepen-
dent of A. W3 can be expressed as an integral over z =
cos 6:

= (ot - 2]

/zj,c dz 23 exp [— (a1z2 —2a2z + g)] Yo(z), (7)

where a1 = (w3/6w)?, az = wawm/(6w)?, and a3 =
1/tan?8,,. The lower limit z;c is wrc/ws, and the
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Figure 1. Cyclotron and Landau contributions to the
diffusion coefficient D(ag) for E = 200 keV, L = 4. For

ap below 80°, the Landau term is negligible.

integral is zero for zzc > 1. This vanishing of the Lan-
dau damping term occurs for values of A greater than
Az, where h(A\z) = 1/[sin® ag + (ch/w:(;O))]. Because
h()\) is a strictly increasing function, Ay, is less than A,.

The term ¥y differs from Lyons’ &g by a factor of
cos? 0 and is given by [J; () — (cot? a/v)nJo(n))?, where
n = 1psinf and o = 7(w§0)/ﬂe) tana. The factor ¥g
is bounded above by [j; + (cot® a/v) mjo]?, where jo
is an upper bound for Jo(n) and j; is an upper bound
for J1(n). A permissible value for j; and j; is unity,
but in some cases one can do much better. If 7 is less
than the location of the first peak of J;(7), namely n =
1.841, then Ji(7) can be used for j7;. Similarly, if 7
is less than 1.256, where nJo(7) reaches its first peak,
then Jo(7p) can be used for jo.

An upper bound is still required for the integral of

2% exp (—a;2?) exp (2a22) exp (—Z—g), (8)

1(z)
which describes the distribution of wave energy in § and
w. Unfortunately, no single approximation is satisfac-
tory for all possible values of aj, ag, and az. Several
different upper bounds may be derived, by a variety of
methods. The integral left after replacing exp(—az/22)
by exp(—ag) is of the same form as the finite inter-
val version of the upper bound in (5) for the cyclotron
terms. Another useful bound is

1

max[exp (—a12® + 2a2z)] / dz 2% exp (—a—g>,

zLc z

(9)
which may be evaluated in closed form. For the pa-
rameters tested, the most powerful bound turns out to
be simply max[/(z)] (1 — z.¢). Finding the maximum
of I(z) requires an iterative solution for the zero of its
derivative; one can easily show that there is exactly
one such zero, and that it is bracketed by the smallest
and largest of 3ap/a;, (3a3/4)/4, and (3/4a;)?/. The
Cauchy-Schwarz inequality and its generalizations may
also be used to obtain upper bounds. Of course, one
tests each bound against the minimum value of interest
before computing any others. The cost of computing
these bounds is far outweighed by the savings of skip-
ping unnecessary integrations of the full expression for

Ws. 58

23,743

Use of the Upper Bounds

As a concrete illustration, Figure 1 shows the sepa-
rate contributions to D(ag) from n = 0 and from n # 0,
for the particular case £ = 200 keV, L = 4. The same
parameters were used by Lyons et al. [1972], namely,
W /27 = 600 Hz, fw/2% = 300 Hz, wyc/2m = 300 Hz,
tané, = 5, B, = 35 m~, and electron density N =
1000 (4/L)* em~3. The diffusion coefficients are signif-
icant for a wide range of n and «g. Figure 2 shows the
situation at ag = 80°, where the cyclotron and Landau
contributions are comparable. The full cyclotron part
of D(a) was computed as an integral over A according
to (1). It was then used to determine, at each A, the
level WiMn which W3 must exceed for its contribution
to the Landau term to be nonnegligible. The endpoint
AL is 4.7°, and the analytical upper bound for W3 in-
dicates that W3 is of no interest below about A = 4.4°.
Also shown is the actual value of Wj, revealing that
W3 is in fact significant only for A greater than about
4.6°. For lower )\, its evaluation is a wasted effort. For
lower values of ag, the upper bounds successfully pre-
dict that W3 is negligible for all ), in agreement with
Figure 1 which shows that then the total Landau term
is much smaller than the cyclotron term and need not
be computed.

Precipitation Lifetimes and Fluxes

The pitch angle diffusion coefficients are of direct in-
terest in themselves, but perhaps more important is
their effect on the radial profiles of the flux distribu-
tion. An equation can be written for the phase space
distribution as a function of L, px, and ap, but it is
simpler and often sufficient to consider the flux of equa-
torially mirroring particles only. This is accomplished
by using a precipitation lifetime for particles to pitch
angle scatter into the loss cone, which reduces the di-

100 T T T
wmin
3

1075F

RTINSV E BT Y

10-°f
r | E=200 keV

L=4
a,=80°

1075F

1070}

107%( el

Figure 2. The exact W3(), and its upper bound. Also
shown is the minimum value below which the contribu-
tion of W3 to the Landau part of D{ag) is negligible
compared to the total cyclotron part.
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mensionality of the problem while retaining much of the
essential physics.

Lifetimes

In the formulation of Lyons et al. [1972], the bounce-
averaged electron distribution function f is assumed to
be factorizable into F(t) g(ap), which allows the sepa-
ration of variables in the pitch angle diffusion equation
and the identification of the precipitation lifetime 7 with
F/(dF/dt). A complicated nonlinear integral equation
is found for g, involving the previously determined dif-
fusion coefficients D(ag). Once g is found, 7 can be
determined. Here a simpler, alternate procedure is pre-
sented which only requires solving ordinary differential
equations (ODEs), not integral equations. Invoking the
separation of variables, g satisfies

T sin 2a9

2 (10)

—(%— [DTsin 2ag—di] +

=0
dao dao 9 ’

where T(ap) is the ap-dependent part of the bounce
period as given earlier, and 7 is still to be found. The
boundary conditions (BCs) used by Lyons are

glar) = 0, (11a)
dg 7
EEE(E) = 0, (11b)
/2
2/ gsinao dao = 1, (11C)
ar

where ¢, is the loss cone pitch angle, given by sinay
= [4L5(L — 2)]7!/%. For any choice of 7, a solution of
the second-order ODE is determined by two BCs; only
for the desired value of 7 is the third satisfied as well.

The problem can be recast as a two-point boundary
value problem (BVP) for the variables

z21= 2 f:f g(a)sine da, (12a)
zo= D7Tsin 2&0%, (12b)
23 = 9(eo), (12¢)
24 = 1/Dr, (124d)
which obey
21 =  2z3sinay, (13a)
2y = —2z3T sin2ay, (13b)
/ 2224
% T'sin 200’ (13¢)
2y = =(D'/D) z4, (134d)

where the primes mean d/dag. In these variables, the
BCs of (11) become

(14a)

2 (3)=1 =(3)=0
0. (14b)

zi(ap) =0, 2z3(ar) =
The effect of pitch angle scattering on the phase space

distribution function has been considered in more detail
by Retterer et al. [1983], who derive an equation for g
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inside the loss cone, which will not be empty if scatter-
ing into it is strong enough. Treating the loss cone as
a boundary layer, they derive a simple expression for
the asymptotic behavior of g as a function of u(ag) =
sin® ao/2DT in the limit u > ur, where ug, = ulay).
This has the form g/go = log(u/ur) + A(ur), where
go is an undetermined constant and the function A(u)
is obtained numerically. The quantity u indicates the
size of the loss cone relative to the strength of the scat-
tering. The logarithmic derivative of this expression
for g is matched to that of the solution of (10) at ag,
which gives, in place of the fourth BC in (14), the con-

dition 23(011,) = A Zg(aL) 24(041,), where A= A(uL)
/ {4cos2 oy — sin2qy, [T’/T(aL) + D’/D(aL)]}. In

principle, the first BC in (14) should be modified as
well, but we can neglect this as long as the fraction of
particles in the loss cone is small.

With either set of BCs, the BVP can be solved by
a shooting method, in which, in essence, one integrates
the ODEs from /2 to c«y using an initial guess for 23
and 24 at 7/2, and then adjusts the guesses based on
how nearly the BCs at o are satisfied, repeating un-
til convergence. Standard algorithms exist which make
this adjustment efficiently [Press et al, 1992]. The
shooting, or integration, is done from m/2 to ay be-
cause in this direction the true g, and errors in the trial
g, exponentially decrease rather than increase. The pro-
cedure works quickly and reliably, typically converging
in five or six iterations. Of course, once z4 is found, 7 is
given by 1/Dz4 evaluated at any ap. The distribution
function profile g{ap) is also obtained, being given by
23.

Figure 3 shows the lifetimes obtained using the same
parameter values as Figure 1, considering cyclotron har-
monics up to n = 100, which is found to be sufficient to
include all non-negligible terms. The results originally
published by Lyons et al. kept » only up to +5, due to
computational limitations. For energies above 500 keV
and L larger than about 3, the additional harmonics
lead to significantly shorter precipitation lifetimes. The
BCs of (14) were used, but using the boundary con-
ditions of Retterer et al. instead made no appreciable

100
"
)
© 10F
~
-
1

Figure 3. Precipitation lifetimes from diffusion coeffi-
cients computed using a maximum of n = %100 (solid
curves) or n = £5 (dotted curves).
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500 keV

flux (#/cm?—s—ster—keV)

Figure 4. Steady state fluxes using precipitation life-
times from diffusion coefficients computed using a max-
imum of » = %100 (solid curves) or n = %5 (dotted
curves).

difference, due to the weakness of the diffusion relative
to the loss cone size, as reflected by large values of ur.

Steady State Fluxes

Lyons and Thorne [1973] model the steady state flux
for equatorially mirroring particles as a function of L
and energy by imposing a flux level at an outer bound-
ary and finding a balance between radial diffusion and
losses due to precipitation and Coulomb scattering. The
distribution function f, which determines the flux, is
given by

af 20 /DL of 1 1 .

5 =0=Ua(TFer)-Gra)r @
Here 7 is the precipitation lifetime discussed directly
above, and the Coulomb scattering lifetime is modeled
by 7. = 3x10% [E(MeV)]3/2/N(L). The radial diffusion
coefficient Dy is due to electric field fluctuations 6F
at the azimuthal drift frequency wp, whose autocorre-
lation is assumed to have a rapid rise and exponential
decay time T [Cornwall, 1968] and is given by

§EN2  T/4
“E) 1+ (wpT/2)%

Equation (15) is simply a one-dimensional diffusion
equation for f(L,p) at each value of u, and can be
solved by standard finite differencing, with f(L, 4) then
converted to flux j(L,E). For a given value of g,
Coulomb scattering is only effective at low L, while
pitch angle scattering is responsible for increasing deple-
tion of f at larger L. This, combined with energization
of particles as they diffuse inward in L at constant g,
generates the slot region of j(L, F) as shown in Fig-
ure 4 (with the whistler amplitude B, set to 10 mv,

DLL = (C
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8E = 0.1 mV/m, and T = 45 min). Compared to the
corresponding results of Lyons and Thorne {1973], the
shorter lifetimes naturally lead to lower flux levels, al-
though the results are qualitatively similar.

Summary

We have retained the original formulation of the
bounce-averaged quasi-linear electron pitch angle diffu-
sion coefficient, which has proven quite successful, even
with its greatly simplified whistler dispersion relation.
A key point of that work was that all cyclotron harmon-
ics must be considered, not just the primary one. We
have presented a method of making this principle prac-
tical, by avoiding much of the evaluation of negligibly
small contributions while concentrating on the impor-
tant ones. We have also presented a simple procedure
for obtaining precipitation lifetimes from the diffusion
coefficients, which can be used to find the distribution of
equatorially mirroring particles, f(L, ). Earlier calcu-
lations of these quantities have been improved, leading
to modified lifetimes and fluxes of high-energy electrons
in the outer radiation belt.
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Proton-Whistler Interactions in the Radiation Belts
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The interactions of whistlers with radiation belt protons is investigated. In the inho-
mogeneous geomagnetic field, near the equator, the spacing between cyclotron resonances
is very small. After crossing multiple harmonic resonances, a significant change of par-
ticle energy takes place, and the protons pitch-angle scatter toward the atmospheric loss
cone. A test-particle hamiltonian formalism is investigated for first and second order res-
onant protons. Quasilinear theory is applied for first-order resonant particles to obtain
bounce-averaged, diffusion coefficients. The Fokker Planck equation, containing pitch-
angle, energy and the cross energy/ pitch-angle diffusion terms, is investigated to calculate
diffusion life times.

1. INTRODUCTION

We consider the interaction of plasmaspheric electrons and protons with whistler waves.
The particles are trapped within the earth’s radiation beits moving back and forth along
field lines between magnetic mirror ?oints. We call r the bounce period, the time required
for a particle to go from one mirror point to the other and return. In the region of interest,
the geomagnetic field, Bo, is described as a dipole. The interaction region is limited to
the plasmasphere, L < 4, where L is the equatorial distance of the field line measures
in Earth radii (Rg). The plasmashere is made up of cold particles of ionospheric origin
whose distribution is isotropic and Maxwellian. During magnetic storms the radiation
belts fill with energetic, trapped particles whose density is much smaller than that of the
coid plasma. Whistlers are right-hand polarized electromagnetic waves whose magnetic
field, |Bx| <« Bo. Often they propagate in ﬁeld-alig:néd ducts due to density depletions
in local flux tubes. They can either be launched from ground sources or be generated in
the plasmasphere. The dielectric properties for wave propagation are determined by the
magnetized cold plasma distribution. These waves interact with the energetic particies,
if the Doppler-shifted frequency of the waves is some harmonic of the gyrofrequency. For
electron-whistler interactions the waves and particles travel in opposite directions. For
protons they travel in the same direction and the wave phase velocity is very close to the

proton parallel velocity. The situation is depicted in the Figure 1.
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Bo
Figure 1. Schematic representation of whistler (w,k), interacting with electrons and pro-
tons near the equator. The coordinate system used in this paper is depicted here.

Whistler-electron interactions has been extensively study over the years *3. The elec-
trons typically have energies between 10 to 50 keV. The interaction occurs mainiy at the
first gyroharmonic of the electron gyrofrequency, although higher gyroharmonics may also
be important*. The electron energies change very little during these interactions. The elec-
tron pitch angie is 6, where tan § = v, /vy, the ratio between the parallel and perpendicular
components of the particle velocity. The pitch angle can be significantly changed and, as a
result, the particle is scattered into the loss cone and precipitate into the ionosphere. Be-
cause large numbers of electrons interact with the waves, they grow in amplitude to values
whose limits depend on the degree of anisotropy of the electron distribution function®. De-
tailed analyses are given in the papers by Villalén and coworkers*®. These investigations
where based on relativistic, quasilinear theory that simultaneously considers wave growth
and particle depletion from the radiation belts.

Proton-whistler interactions have not received as much attention. Recents experiments
have shown®7 that protons whose energies are in the hundreds of keV range, can be scat-
tered from the radiation belts by analogous interactions. The frequency of the wave must
be close to the equatorial electron gyrofrequency. The particie energy changes signifi-
cantly during the interactions®. Thus, the changes in pitch angle is due to both direct
pitch angle and energy diffusion. Because of the small population of high-energy protons
we neglect their effects on the amplitudes of the waves. We present a study of proton
whistler interactions by using a test particle formalism and a statistical épproach based
on the Fokker-Planck equation. In Sec. II, we present the main dielectric properties of
whistler waves; because the whistler protons interactions require large refractive indices,
we limit ourselves to the pararesonance mode®. Sec. III presents the resonance condition
for multiple harmonics of the gyrofrequency. The geomagnetic latitudes of high harmonic
resonances are obtained based in a parabolic approximation for the near equatorial geomag-
netic field. We show that the distance between subsequence resonances is very small. The
crossing of multiple resonances near the equator makes the interactions very effective™.

Sec IV contains the equations for the test particle in a varying geomagnetic field using
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pamiltonian formalism. Sec V studies the evolution of the action (I} angle (&) variabies
as function of the distance (s) along the fux tube using Taylor expansions around isolated
resonances. Let us expand &, around the equator: &(s) = &(0)+ fﬁl)a+ éﬁz) s*. First-order
resonant particles are such that Eﬁ” =0 (i. e., at the equator d¢;/ds = 0). This is the
resonance condition as given in Eq. (5). The second-order term &) ~ dB,/ds + O(B).
For large wave amplitudes O(B,) is larger than the contribution of the inhomogeneous
geomagnetic field dB,/ds. In this case, we say that protons which are in gyroresonance (i.
e. Eﬁ” = 0), satisfy the second-order resonance condition. This is because to zero order in
the electric field amplitudes d€,;/ds = d*§,/ds* = 0. For first-order resonant particles, the
change in action is proportional to the electric field amplitude. For second-order resonant
protons the change in action is proportional to the square root of the electric field amplii-
tude. The second-order resonance condition is met when the field amplitude is larget®1?,
the threshold is calculated in this paper. Sec. VI contains a quasilinear formulation for
the distribution function of first order resonant protons. We assume that the protons are
unmagnetized in time scales of the order of 27 /w, where w is the frequency of the whistler
wave. They are magnetized in times comparable to the bounce period. Because diffusion
occurs over many bounce periods, we average the diffusion equation along the flux tube.
The bounce averaged, Fokker-Planck equation contains the diffusion coefficients for the
pitch angle, energy, and the cross energy/ pitch angle terms. These coefficients are shown
to have the same orders of magnitude. We reduce the equation to a one-dimensional diffu-
sion equation to be solved for the energy part of the distribution function. This eigenvalue

equation gives the diffusion life-times of protons in the radiation belts.

II. QUASI-ELECTROSTATIC WHISTLER WAVES

We consider a whistler wave of frequency w and wave vector k, propagating in a field
aligned duct. The geomagnetic field B, is along the z direction and ¢ is the angle between
X and Bo. The dispersion relation for the refractve index 7 = ck fw is

w,[w)?
o G e T o
where w, and Q. are the electron plasma and gyro frequencies, respectively.

The electric fields components are denoted by & = &, & = t&, and &, = —&3, where

& _ 1 (wfep
& 7* -1 (Q./w)—|cosg|

; e @)
& _ 1= (w/w)?—(n sing) @)

& n° sin¢ cos¢

For the case where w ~ {1,(L)|cos |, the equatorial refractive index n*(L) > 1, then

&/ < 1, and &;/& ~ —sing/coso. The wave becomes quasi-electrostatic, i.e. E is
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in the direction of k. and the group veiocities v, ~ 1/n are very small. These waves can
interact with protons which energics are in the hundreds of keV.

Near the equator, the Earth’s magnetic field approximates a parabolic profiie

Q s

LS Y

5109 ) (4)

L
where s = RgLi, R is the Earth’s radius, L is the magnetic shell and ¢ is the geomagnetic
latitude (see the figure}, and rp = (v2/3)RgL. The equatorial gyrofrequency is Q(L); Q

stands for the gyrofrequencies either for electrons or protons, along the field line.

1. RESONANT PROTON-WHISTLER INTERACTIONS

For whistler waves to interact strongly with protons near equatorial regions, they must

satisfy the resonance condition
w—kpyp — £, =0 (5)

where, £ = 0,1,2...; 11, is the proton gyrofrequency, and kj and vy are the parallel compo-
nents of the wave vector and particle’s velocity, respectively. We call u = sin® 61, where
8, is the equatorial pitch angle. Here 8 > 8.(L), where 6.(L} is the pitch angle at the
boundary of the loss cone, and . the corresponding value of x. As function of the L shell,
the mirror ratio is o = 1/p, = L3(4—3/L)*2. To zero order in electric field amplitudes, the
first adiabatic invariant is conserved. Then we may write for the parallel and perpendicular
components of the particle velocity v: vy = v{l - pQ/QL)M, vy = v[pl/Q(L)]2.

If we assurpe that at the equator the protons interact with the harmonic £ = 1, the
energy of resonant particles is found solving for the equation: w — kyvg = (L) = 0. We

show
1 1 m,

n{L) cos¢ (L — p)V/? (1- ;n_r 1) (6)

v
c

where L denotes equatorial values, m., are the electron, proton masses, and f, = Q.(L)/w.
By solving for Eq. (5), using the parabolic profile in Eq. {4) , we find the geomagnetic
latitude 4, of higher order resonances (i.e., £ > 1),

2 _ 4 e, cosdl— 1) ——

¢l_—9m, (l 1) (fc| 0545! 1) g(“) (7)
where

o(6) = 72— (cos 6l = 1) + | cos gl (®)

The distance along the flux tube where resonant interactions take place is given by, s¢ =
RpLi,. The distance between sequential resonances is As, = RgL(ess — ¥e)-

For example, we take L = 3.5, w,/Qe(L) = 7.9, w/f(L) = 0.75, and 6, = 10° For
é = 37°, we show that n{L) = 41.4 and the energy of the resonant protons is 437 keV.
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The location along the geomagnetic field of the gyroresonances are: ¥, = 0.25%,¢3 =
0.35%, ..., 17 = 1.°. As another example we take ¢ = 40°, then 5(L) 72 and the
proton energy is 158.6 keV. The location of the gyroresonances are: #%; = 0.15°,¢y =
0.21°, ..., 47 = 1.°. Thus there are multiple resonances crossings (17 for the first and 47

for the second examples) within one degree of the magnetic equator, which makes the

proton whistler interactions very efficient.

IV. THE HAMILTONIAN EQUATIONS

We normalize time ¢ to 2,(L), velocity v to ¢c~!, and length s to rz!, and from now on

we always refer to these normalized variables. Let us define

fz="\+_/:d""!-k!l(3l)‘ﬁprLj‘ (9)

where tan A = v, /v, and v., are the components of the particle velocity in the z and y

directions, respectively. The dimensionless electric field amplitudes are

g = q_e‘. (10)
mycw
for 1 = 1,2,3, and where g is the proton charge. The action-angie variables are (I,1),
where : q (L) .
= 2L )
=3 a, {11)

To first order in the electric field amplitudes ¢;, the normalize, time-dependent hamii-

tonian, as function of the canonical pairs, (vy,s), and action-angle variables, is

i Q = . n
X = 221 +1I E(T) + hgm sin &, {53 vy Jg(kl_p) - [ZQ(L) }1/2 I‘t} (12)

Here
Ty = (g1 — €2) Jera(krp) + (€1 + €2) Je-1(kp) (13)

where J; are Bessel functions whose arguments are k. p = {ck./Q,) [2I2/Q(L)]?. T, in
addition to the electromagnetic wave, there is an electrostatic potential ¢,, then we repiace
in Eq. (12}, &3 by €3 + €,/ vy, where €, = q¢,/m,c*.

For particles crossing a single isolated cyclotron resonance, we consider only one term

¢in the summation in Eq. (12). In this case, we find the following constant of motion

w
Ce=1¢e4 - m I (14)
By calling x = (w/Q,) sin® 8(s), where 0(s) is the local pitch angle, we find
bw I
X=0,0) Cor Wi s
This defines the evolution of the pitch angle as a function of the action /.
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By defining v, so that ¥ = v3/2+ IN/Q(L}, we obtain

[21c I ] ” (16
Ty = - - —— e e
e g e }
We can now reduce the problem to one-dimension; in which case we find
. 1

v = v, +siné, {—53 Je(kip) + [2Q(L ]1/: }

ds 1

5 = vt [m 3T, sin g, (17)

To zero order in g, the dimensionless length s = t v,. The equation of motion for I as

a function of s is

g- = cost Tdll,w) (18)
TLv) = —e Jifkos) + — [zn( I =="*T, (19)

As g; — 0, then
% — ko + nmng; (20)

The gyroresonance condition is obtained by setting Eq. (20) equal to zero. When this is
satisfied s = s, (the resonance length) which is defined as s, = 3/ V2 1, and ¥, is given in
Eq. (7).

By assuming that the protons are in gyroresonance, we show that &, satisfies the second

order differential equation

& karz)? 1 dI
—ds—? — oo+ :L) tds 1)
Here
= ._ﬁi. 4 '
= a1 & @2)
m, dk 1. L C
b= nn 210 Gy (23)

where dQ2/ds = 2s Q(L).

V. SECOND-ORDER RESONANCE

We next solve the pair of coupled Eqs. (18) and (21) under the assumption that s is
very close to the resonance length s,. The parallei velocity v, is given by setting Eq. (20)

equal to zero, i.e.
w c

=B = & no

(24)

In this case we may use a Taylor expansion around s,, then
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I

1

1(B) + (P (5= (25)
(3)

& = &R+ (s 20+ (s (26)

R

where I,(R), &(R) are constants, and R denotes values at the resonance (s = s¢). Here
(dI/ds)g) is given by Eqs. (18) and (19), with & = &(R),I = I(R), and v, = v,(R),
evaluated for resonant values. For protons satisfying the resonance condition, ?) = 0.
For convenience we choose cos[&(R)] = 1.

Using Eq. (14) and setting v, = v,(R), we find

.
I(R) = ~Co+ = v}(R 27
® = s a@mam) |t E (21)
where f, = ,(L)/w < 1, and Q(R)/Q(L) = 1+ s;. By substituting Eq. (26} into Eq.
(21) we show
@ _ (kgrz)? 1 dI
& at(R) + UO(R) ¢ (ds)(m (28)
where a,(R) is evaluated at the resonance.
The change of the action [ after crossing the £’th resonance, A/, obtained by integrating

Eq. (18), is approximately

dI
AI = (Z)(ﬂ) 55¢ . (29)
The change in x after crossing a resonance is
- A Yk | U
ax = x(k) [I(R) C¢+I(R)/f,] (T doe (30)

where x(R) is given by Eq. (15) seting I = I(R).
The resonance length 43, is defined as
<00
8s¢ = dscosé; (31)

By combining Egs. (26), (28), and integrating along s we show
9 M2
6350 =T(1/2) cos(x/4) [-T)] (32)
&)

The condition of isolated resonances is §s; < Ase, where Asy = 3/v/2 (%e+1 — ¥e) and ¥,
is given in Eq. (7). '

In the case where the inhomogeneity of the magnetic field is larger than the contribution
of the resonance, we may neglect the term proportional to (dI/ds)(z) in Eq. (28), we get

1/2
81 =(S)m T/2) costr/4) ['pjﬁ[] (23)

where 3,(R) is given by Eq. (22) and must be evaluated at resonance. From the definition

of ¢ in Eq. (13), the change in the action is proportional to the electric fieid amplitudes.
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For interactions such that the contribution of a.(R) in Eq. (28) is smaller than the
contribution of {d//ds)z. we get

2l (R

P cos(r/4} (34)

12
sr=ziehml] Tz

where the = sign depends on the sign of (d//ds)g. We see that the change in particle
momentum / is now proportional to the square root of the electric field amplitudes, i.e.
V€. We call this the second order resonance condition because to zero order in the electric

field amplitudes d£,/ds® = 0. For the case of equatorial interactions (s, = 0}, the condition

for the validity of this approximation is

. ' 123
{j_ (31Em) } > B(R) T(1/2) cosn s (3

Note that for a fix value of w the second order resonance condition is most likely satisfied
for equatorial interactions, because then the inhomogeneity of the magnetic field is small.
Thus the first harmonic will dominate the second-order interactions. If we allow w to be a

function of s, then
a=f ! dn-l-—r diy dw 36
CTQLy ds  Fdw ds (36)

By changing w so that a,(R) = 0 for s, > 0, the second-order resonance condition is
satisfied for other harmonics, and the change in the particle veiocity is proportional to

/& This should be contrasted with the resuit in Eq. (33) where the change in action is

linear with the electric fields and thus smaller than when the condition for second order

resonance is satisfied.

V1. QUASILINEAR THEORY

The distribution function of protons which satisfy the first order resonance condition

is given by solving for the quasilinear equation Lyons and Williams (1984):

ad i . w—kyv .
(L ymnr 5[ (2:;3 G+ w:f ) 5(kyoy — £, —w) 8c(k) G f  (37)

Totm Ot oo
where p is momentum and 7um, the atmospheric loss time is defined in!. By assuming

that w/{lp < sin® 0, (where 0, is the local pitch angle at the loss cone boundary) we may

approximate
R 2Q,(L) prs @  pu @
G = Sl (B 2 22
p 0 (p) ou p op
(38)
. —k
gaeho _ 18 an, 28:m 9 (i p
wps p* op p 2 porp m
(39)
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= Q. Wi{d,¢t
3 st 0, =)0 = () loam =) ] elie
where
6(8) = 1+ cos* ¢+ 3 (2L £ singf (41)

If By is the wave magnetic field (Bx < B,, the geomagnetic field), then the energy density

of waves is
Wi(#,t) = =(=)° (42)

We assume that diffusion occurs on time scales such ¢ 3> rg, where 7 is the proton
bounce time between ionospheric conjugates. We integrate the diffusion equation along
the flux tube by applying the operator 1/75 [ dz/vy to both sides of Eq. (37). The bounce-

averaged diffusion equation, in terms of equatorial pitch-angles 8, and particle momentum,

is
1 ,9,, _ 1 13f af
oot 3 = remd; cosdy a0y S0 ool [D"' R =
A af Bf
The bounce-averaged diffusion coefficients are .
D.,' = ta.nz 0(‘ D,J, (44)
Dc_, = D,,;:—tanof, DP.V (45)
The energy-diffusion coefficient is
_ Zr_‘ﬁ o o +x/2
Dy = T [ K dk ‘/_ g Snd Ak, 9) o (46)
e QULF Walbt) s, A(R)
47l (L o, 2 (R 2 pn
A(k’ é) w; ICOSQﬂ ( )(R) {Q(L)] (¢) (47)

Here R denotes values at the resonance where vy ~ v, and w — ky v = 0. Note that for
small values of ¢, we can neglect the contribution of the parallel component of the wave
field in b(¢) (see Eq. (41)), then D, is approximately independent of u, the equatorial
pitch angle, and we write v

[=FOW KD (48)

where ¢ > 0 is a free parameter. We define the precipitation lifetime as

1 dF
»=-lz I (49)
By combining Egs. (43) through (45) and Eq. (48), we show
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L2k, 1, .. 4 =1 . dK,

25 Ly o delezl) )D”h 4,

5 P dy ap
40 dK 20 d
—D,,— - K-—ipL., )
p Pdp  p o oap’ ;

where K. = uﬁ"“’. This is an eigenvalue equation for 7, as a function of the free paramezer
o. The eigenfunction K(p) is such that must be regular as p — 0, and well behavec Zor

large p, i. e. as p — oo then A < p~°.

VII. SUMMARY AND CONCLUSIONS

We have presented a theoretical anaiysis of proton-whistler interactions near the egza-
tor in the plasmasphere. Whistler waves which are near the pararesonance mode?, man
interact with protons whose energies are in the hundreds of keV. In an inhomogenesus
geomagnetic field, we show that the spacing between subsequence cyclotron resonances is
very small. Because of that, protons are scattered into the atmospheric loss cone aer
crossing multiple resonances. A test-particie hamiltonian formalism is given in terms of
the action (7), angle (&), variables as function of the distance (s) along the flux tube. %e
show that for second-order resonant protons, d€./ds = d*£;/ds’> = 0, and the change in tae
particle’s momentum is proportional to the square root of the electric field amplitudes. Thae
thresholds in electric fields for second-order resonance conditions are calculated. A quawi-
linear formulation for the distribution function of first-order resonant protons is presemsed.
The bounce-averaged diffusion equation contains diffusion coefficients for the pitch ange,
energy, and cross energy/ pitch angle terms. They are shown to be of the same orcers
of magnitude. We reduce the diffussion equation to 2 one-dimensional energy dependent

equation to be solved for the precipitation life times of protons in the Radiation Belts.
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ABSTRACT

Whistler waves, near the electrostatic limit, can interact with trapped,
energetic protons close to the equator in the Earth’s Radiation Belts. In an
inhomogeneous geomagnetic field, the spacing between cyclotron resonances
is very small due to large ion Larmor radii. After crossing multiple reso-
nances, the pitch angles change significantly and the protons are scattered
toward the atmospheric loss cone. A test-particle, Hamiltonian formalism
is investigated. For second-order resonant protons, the change in particle
momentum is proportional to the square root of the wave electric field ampli-
tudes. The thresholds in electric fields for second-order resonance conditions
are calculated. Quasilinear theory is studied to describe the distribution
functions and calculate the diffusion Life times of first-order resonant pro-
tons. The diffusion coefficients for the energy, pitch angle, and the cross
energy/ pitch angle terms are shown to be of the same orders of magnitude.

I. INTRODUCTION

Interactions between whistler waves and energetic electrons in the mag-
netosphere have been the subject of intensive research during the past two
decades [1 — 3]. The wave-electron, resonant interactions are believed to ac-
count for many phenomena such as growth of signals (2], emissions of varying
frequencies [4] and electron precipitation into the ionosphere [5]. Most of the
theoretical work is based on resonant interactions at the first harmonic of the
electron gyrofrequency, although higher harmonics interactions may also be
important [1]. Detailed theoretical analyses taking into account wave growth
and particle depletion, is given in the papers by Villalén and coworkers (see
Refs. [6, 7] and references therein).

The interactions of plasmaspheric protons and whistler waves have not re-
ceived as much attention. This is because the energies required are very large
and the population of protons with energies larger than 500 keV, is small.
Since the proton gyrofrequency €2, is much lower than the wave frequency
w, the resonant velocity vy is of the order of the wave phase velocity w/k;

Scientific Publishers, Inc., Cambridge, MA 02139
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(where kyj is the parallel component of the wave vector). However recent ex-
periments [8, 9] have demonstrated that protons precipitate by interactions
with VLF waves launched into the magnetosphere from ground sources. The
wave frequencies are close to the equatorial electron gyrofrequency. Thus,
near the equator, kj is very large and the resonant energies of protons rela-
tively low. We limit our studies to regions near the magnetic equator of the
plasmasphere L < 4 (where L is the equatorial crossing distance of the field
line measured in Earth radii Rz).

Figure 1. Schematic representation of whistler (w, k), interact-
ing with electrons and protons near the equator. The coordinate
system used in this paper is depicted here.

The plasmasphere contains a relatively dense population of cold parti-
cles of ionospheric origin whose distribution function is isotropic in pitch
angle. The energetic particles originate from stationary sources {convective
transfer accross L shells) and pulsed sources (sudden impulses during mag-
netic storms and substorms). They are trapped within the radiation belts
traveling back and forth along field lines between magnetic mirror points,
and interacting with the quasi-electrostatic whistler waves near the mag-
netic equator. The predominant feature of the resonant interactions is the

474

73




crossing of multiple harmonics of the proton gyrofrequency. The proton
pitch angle is §, where tan§ = v. /v (the ratio between the perpendicular
and parallel components of the velocity). The pitch angles can change due
to direct pitch-angle scattering or to energy diffusion [10]. This should be
contrasted with the analogous whistler-electron interactions, where the pre-
dominant harmonic is the first. Also, electron energies do not change during
the interactions. For proton-whistler interactions, the waves and particles
travel in the same direction, with the waves slightly overtaking the protons.
For electron-whistler interactions the waves and particles travel in opposite
directions. The situation is depicted in the Figure 1.

The paper is organized as follows: Sec. II describes the propagation
of whistler waves in a cold plasma, near the electrostatic limit {11]. Sec.
II1 studies the resonance conditions for multiple harmonics of the proton
gyrofrequency. The inhomogeneous, near-equatorial geomagnetic field is de-
scribed by a parabolic profile. Due to the large ion Larmor radii, we show
that the distance between resonances is very small. Because of the inciu-
sion of multiple harmonics, these interactions are very effective [12]. The
test-particle Hamiltonian formalism for each isolated cyclotron resonance, is
given in Sec. IV. Sec V studies the evolution of the action (/) and angle
(€,) variables as function of the distance (s) along the flux tube using Taylor
expansions around isolated resonance points. Let us expand ¢, around the
equator: &(s) = £(0) + ﬁl) s+1/2 {Ez) s?. First-order resonant particles are
such that 5§‘) = 0. That is, at the equator dé;/ds = 0, which is the resonance
condition as given in Eq. (5). The second-order term {Ez) ~ dB,/ds+O(Bu).
For large wave amplitudes O(B\) is larger than the contribution of the in-
homogeneous geomagnetic field dB,/ds. In this case, we say that protons
which are in gyroresonance (1. e. fEl) = 0), satisfy the second-order reso-
nance condition. This is because to zero order in the electric field amplitude
dé;/ds = d%¢;/ds® ~ 0. For first-order resonant particles, the change in
action is proportional to the electric field amplitude. For second-order reso-
nant protons, the change in action is proportional to the square root of the
electric field amplitude. The second-order resonance condition is met when
the field amplitude is large [13, 14]. The thresholds in eleciric fields, are then
calculated. Sec. VI contains a quasilinear formulation for the distribution
function of first order resonant protons. We assume that the protons are
unmagnetized in time scales of the order of 27 /w, where w is the frequency
of the whistler wave. They are however magnetized in times comparable to
the bounce period. Because diffusion occurs over many bounce periods, we
average the diffusion equation along the flux tube. The bounce averaged,
Fokker-Planck equation contains the diffusion coefficients for the pitch an-
gle, energy, and the cross energy/ pitch angle terms. These coefficients are

oV
shown to have the same orders of magnitude. We reduce the equation to a
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one-dimensional diffusion equation to be solved for the energy part of the
distribution function. This eigenvalue equation estimates the VLF diffusion
life times of protons in the radiation belts.

II. QUASI-ELECTROSTATIC WHISTLER WAVES

We consider a whistler wave of frequency w and wave vector k, prop-
agating in a field-aligned duct. The geomagnetic field B, is along the z
direction and ¢ is the angle between k and Bo. The dispersion relation for
the refractve index 7 = ck/w is

(wp/w)?
(Qe/w) [cos @] = 1 (1)

where w, and Q. are the electron plasma and gyro frequencies, respectively.
The electric field is [15]

7t =1+

E=%& cosU —§& sin¥ —%& cos ¥ (2)

where %, ¥ and % are unit vectors; ¥ = k; = + ky z — wt, and ky, k. are the
components along and perpendicular to Bo of the wave vector. The ratios
of electric field components are

& 1 (wp/w)?
& 7 -1 (Q./w)—|cosd|

(3)
& _ 1= (wu) = (n sy o
& 7% sin ¢ cos ¢

For the case where w ~ Q.(L)] cos ¢/, the equatorial refractive index 7*(L) >
1, then &/& < 1, and & /& ~ —sin¢/cos . The wave becomes quasi-
electrostatic,i.e. E has a significant component in the direction of k, and the
group velocity vy ~ 1/7. This wave can interact with protons which energies
are in the hundreds of keV.

Near the equator, the Earth’s magnetic field may be approximated as
having a parabolic profile

s =G )

where s ~ RgLy and v is the geomagnetic latitude (see the figure), and
71 = (V2/3)Rp L. The equatorial gyrofrequency is denoted by Q(L), and Q
stands for the gyrofrequencies either for electrons or protons at a location s
away from the equator along the field line.
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[II. RESONANCE PROTON WHISTLER INTERACTIONS

For whistler waves to interact strongly with protons near equatorial re-
gions, they must satisfy the resonance condition

w — k”v” e EQP =0 (6)

where, £ = 0,1,2...; Q, is the proton gyrofrequency, and v is the parallel
component of the particle’s velocity. We call p = sin® 87, where 6 is the
equatorial pitch angle. Here § > 6.(L), where 8.(L) is the pitch angle at the
boundary of the loss cone, and g, the corresponding value of . As function
of the L shell, the mirror ratio is o = 1/pc = L* (4 — 3/ L)"/*. To zero order
in electric field amplitudes, the first adiabatic invariant is conserved. Then
we may write for the parallel and perpendicular components of the particle
velocity v: vy = vl — pQ QLM vi = v[pQ/Q(L)]M2.

At the equator the protons interact with the harmonic £ = 0, and then the

energy of resonant particles is found solving for the equation: w — kjv; = 0.
We show
P : @
¢ (L) cos¢ (1 — p)i/?

where 7(L) denotes equatorial values of the refractive index, and f. =
Q.(L)/w.

By solving for Eq. (6), using the parabolic profile in Eq. (3) , we find
the geomagnetic latitude ¥, of higher order resonances (1., £ 2 0),

n 4 m, ) ) 1
¢Z=§%—p€(feicos¢l—1);(#—) (8)
where X
g(#):I’é‘Z(|COS¢|—}')+ECOS¢‘- (9)

where m. , are the electron, proton masses. The distance along the flux tube
where resonant interactions take place is given by, s, = Rg L. The distance
between two subsequent resonances is obtained from As; = RgL(%r21 — ¥1)-

For example, we take L = 3.5, w,/Q.(L) = 7.9, w/Q.(L) = 0.75, and
9, = 10°. For ¢ = 37°, we find that n(Z) = 41.4 and the energy of the
resonant protons is 437 keV. The location along the geomagnetic field of
the gyroresonances are: ¥, = 0.25°,¢; = 0.35°,...,¢+; = 1.°. As another
example we take ¢ = 40°, then n(L) = 72 and the proton energy is 158.6
keV. The location of the gyroresonances are: ¥, = 0.15%, w3 = 0.21°, ..., ¥47 =
1.°. We also show that 4, is very weakly dependent upon pitch angle u.
Thus there are multiple resonances crossings (17 for the first and 47 for the
second examples) within one degree of the magnetic equator, which makes
the proton whistler interactions very efficient.
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1V. THE HAMILTONIAN EQUATIONS

We normalize time ¢ to Q,(L), velocity v to ¢™?, and length s to rz}, and
from now on we always refer to these normalized variables. Let us define

G=O+ /0 ds' g, ky(s') — E%t (10)

where tan A = v,/v,, and v., are the components of the particle velocity in
the z and y directions, respectively. The dimensionless electric field amph-
tudes are

g&:

gi= ——— (11)

MpCw

for i = 1,2,3, and where g is the proton charge. The action-angle variables

are (I, A), where

vi Qp(L)

2 Q
To first order in the electric field amplitudes €;, the normalize, time-

dependent hamiltonian, as function of the canonical pairs, (vy, s), and action-

angle variables, is

I= (12)

2
Yy

Q 0 IQ
0 +17 m + Z sin §; {63 vy TJi(kip) — [m]l/l’ I‘l} (13)

{=-00

H=

Here I'; is a linear combination of Bessel functions J,

¢ = (e1 — €2) Terr(kop) + (€1 + €2) Tema(kip) (14)

whose arguments are ki p = (ck. /) [2IQ/Q(L)}*/2. If, in addition to the
electromagnetic wave, there is an electrostatic potential ¢,, then we replace
in Eq. (13), e3 by €3 + €o/v)|, where &, = qo/mpc?.

For particles crossing a single isolated cyclotron resonance, we consider
only one term £ in the summation in Eq. (13). In this case, we find the
following constant of motion

c£=zﬁ—m1 (15)

The criterion for overlapping of resonances is given later on in Eq. (37).

By defining v, so that H = v2/2 + IQ/Q(L), we obtamn

2 w Q 1z
= (to 15 - ww) e
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We can now reduce the problem to one-dimension, in which case we find

v = Uptsing Y(I,v,)

ds 1. I 12 .

g iy 7
= v°+vo[2Q(L)} T, siné; (17)

where T(I,v,) is defined in Eq. (19).
To zero order in €;, the dimensionless length s = ¢ v.. The equation of
motion for I as a function of s is

ﬂ = ¢ COng Tl(I,”UD) (18)
ds
1. 19
T((I,‘Uo) = -—€3 jl(kLp) + ; IZQ(L)}I/z Fl (19)
As ¢; — 0, then
d¢, 8y —w
A L AT (20)

The gyroresonance condition is obtained by setting Eq. (20) equal to zero.
When this is satisfied s = s; (the resonance length) which is defined as
s¢ = 3/v/2 % and ¥y is given in Eq. (8).

By assuming that the protons are in gyroresonance, we show that ¢
satisfies the second order differential equation

dzft (k”T‘L)z 1 d[
—d—s—zza["\‘ o Z:i_s_ (21)
Here
_ B, 49
T L) ds (22)
_ mp dly 1 G
ﬂl - Qp(L)TL me dQ: v, [2 vz] (23)

o

where dQ0/ds = 2s Q(L).

V. SECOND ORDER RESONANCE

We next solve the pair of coupled Eqs. (18) and (21) under the assump-
tion that s is very close to the resonance length s;. The parallel velocity v,
is given by setting Eq. (20) equal to zero, .e.

_w ¢ %
wB) = i T ) (24)
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In this case we may use a Taylor expansion around sy, then

] =~ Ig(R) -+ (%)(R) (s - 5!) (25)
(2)
b = R+ (-5 + (s — a0’ (26)

where I,{R),{(R) are constants, and R denotes values at the resonance
(s = s¢). Here (dI/ds)r) is given by Egs. (18) and (19), with & = &(R), I =
I(R), and v, = v,(R), evaluated for resonant values. For protons satisfying
the resonance condition, EEI) = 0. For convenience we choose cos[é(R)] = 1.

The constant of motion Cy is obtained evaluating Eq. (13) at the equator,

we show
_ 1 c LI - )
Ge= (\/in(L) cos ¢ S1p(L) rL> l-p [ f +4 (27)

where f, = Q,(L)/w < 1. Using Eq. (16) and setting vo = vo(R), we find

, ¢,
4R = T (R D) {'c“ RO (2

where Q(R)/Q(L) = 1+ s}. By substituting Eq. (26) into Eq. (21) we show

Bl

where a(R) is evaluated at the resonance.
The change of the action I after crossing the £'th resonance, A, obtained
by integrating Eq. (18), is approximately
dI
Al = (E‘;)(H) 554 (30)
The resonance length §s, is defined as

§sy = /?m dscos ¢y (31)

By combining Eqs. (26), (29), and integrating along s we show

1/2
§sy=T(1/2) cos(w/4) [——(25—)-] (32)
€271

Resonances are isolated in space if §s; < Asy, where As; = 3/\/§(¢z+1 =)
and 1, is given in Eq. (8).
In the case where the inhomogeneity of the magnetic field is larger than
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the contribution of the resonance, we may neglect the term proportional to
(dI/ds)my in Eq. (29), we get

'|l/2

dl ,
ar= (e 1012) cosir) [lmq (33)

where 3,(R) is given by Eq. (23) and must be evaluated at resonance. From
the definition of I'; in Eq. (14), the change in the action is proportional to
the electric field amplitudes.

For interactions such that the contribution of a/( R) in Eq. (29) is smaller
than the contribution of (d{/ds)g, we get

dl

2, 1/2
AI::{][(E)(H) 2.(R)]

1/2 2
] T(1/2) cos(w/4) (34)

ke

where the = sign depends on the sign of (d/;/ds)g. We see that the change in
particle momentum [ is now proportional to the square root of the electric
field amplhtudes, i.e. \/z;. We call this the second order resonance condition
because to zero order in the electric field amplitudes d?¢,/ds® ~ 0. For the
case of equatorial interactions (s, = 0), the condition for the validity of this
approximation is

[y ar A\
[\/% (%!(;)mn‘) J > B(R)T(1/2) cosw/4 (35)

Note that for a fix value of w the second order resonance condition is most
likely satisfied for equatorial interactions, because then the inhomogeneity
of the magnetic field is small. Thus the first harmonic will dominate the
second-order interactions. If we allow w to be a function of s, then
1 4 dky dew

ae—ﬁzmz*mwz (36)
By changing w so that a/R) = 0 for s; > 0, the second-order resonance
condition is satisfied for other harmonics, and the change in the particle
velocity is proportional to \/2;. This should be contrasted with the result in
Eq. (33) where the change in action is linear with the electric fields and thus
smaller than when the condition for second order resonance is satisfied.

We have carried out some preliminary calculations applying the theory
presented in this section; for waves such that 0.5 < w/€l < 1, and cos o >
w/Qy, and for electric field amplitudes which are in the range 107% to 10~*

Volt/cm. They show the contribution of large harmonic resonances, i.e. £ >
50 in the change of the action AJ as defined in Eq. (30). As a matter of fact
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of fact the largest contributions to AJ come from values of £ which are close
to the argument of the Bessel functions k. p. For equatorial pitch angles
between 7.5 and 20 degrees, at the L shell 3.5, the values of £ which give
maximum change in the action are larger than 50 and smaller than 150.
Overlapping of resonances occur when

Al

- 2 7

For electric fields greater than 10™* Volt/cm all resonances (150 > £ > 1)
overlap, but for smaller electric fields only some of them do for particles which
equatorial pitch angles are near the loss cone. Note that even if resonances
overlap in space (see comments after Eq. (32)), we must still treat them as
independent of each other if the criterion in Eq. (87) is not met.

V1. QUASILINEAR THEORY

The distribution function of protons which satisfy the first order reso-
nance condition is given by solving for the quasilinear equation Lyons and

Williams (1984):

1 ‘ 6 B . +00 dak A W - k”‘U” -
(——+g)f=7C 2 / 277 T Toms 18(kyuy — €92 — ) O(k) G f
(38)

where p is momentum and Tum, the atmospheric loss time is defined in [1].
By assuming that w/(0p < sin? 6. (where 6. is the local pitch angle at the
loss cone boundary) we may approximate

Tatm l=—cc

A W k”‘un 1 8 2 . 2 Qe(L) b4l 15} 1.3 P
G+ —10 = ——=—p’sinf—--——"—=— (") =
wp. p? Op P p . pop ( P ) Py
(39)
R 2Q(L) pLs 0 P 0
G = == Pryp Z 4 &2 40
p e (p) Ou p Op (40)
= Q. Wi(o,t
S (kyuy + €9, — w) O(k) = (27)° 8(kyyy — w) w—-; Wil#.2) (#) (41)
teeo w? |cos g
where 1
. Clopyow
Bg) =1+ cos’ g 5[ o sindf (42)

If B, is the wave magnetic field (Bx < B,, the geomagnetic field), then the
energy density of waves is

Wi, t) = (222 (43)

T 8ror
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We assume that diffusion occurs on time scales such ¢ >> 75, where 7p
is the proton bounce time between ionospheric conjugates. We integrate the
diffusion equation along the flux tube by applying the operator 1/7p [ dz/v
to both sides of Eq. (38). The bounce-averaged diffusion equation, in terms
of equatorial pitch-angles 01, and particle momentum, is

1 o4 1 5,
(Ta.tm @t)f psin By cosfp 56 SInEL CosuL
1 8f of]
Dy = —— A T
{ 0 50y o 3y
19 of of
—_— Dop =— +Dpo o2 44
pZ 6p {p {p p.p ap p.8 (96[,]} ( )
The bounce-averaged diffusion coefficients are
Dg,g = tanz 9[, Dp‘p (45)
Dg’p = Dp'g = —tan GL Dp‘p (46)
The energy-diffusion coefficient is
2 oo +1/2
g 2 o
= — k k A }C,
Dop ‘UTB/O d /:n—/z sin ¢ A(k, ¢) do (47)
where 4x QL (LY Wil(d,t)  d QR)
Tiie £\ D, o 2 Pji
A = = 2y 4

Here R denotes values at the resonance where vy ~ v, and w — kjv = 0.
Note that for small values of ¢, we can neglect the contribution of the parallel
component of the wave field in b(¢) (see Eq. (42)), then D, is approximately
independent of p, the equatorial pitch angle, and we write

f=F(t)p K(p) (49)
where ¢ > 0 is a free parameter. We define the precipitation lifetime as
1 dF. _, .
T = "["F— -Zl—t_-] (50)
By combining Eqs. (44) through (46) and Eq. (49), we show
28, 1 4o(o + 1) d . dK
= = = 207 p KD, -
- TP]K(P) 2 o K = dp Dpop dp }

do dK 20 d

—_— - pDypl 51
P p.? dp pz dp 1P Lp.pi ( )
where k. = p{°*1). This is an eigenvalue equation for 7, as a function of the
free parameter o. The eigenfunction K(p) is such that must be regular as

2

p — 0, and well behaved for large p, 7. e. as p — oc then K < p~°.
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ABSTRACT

‘Whistler waves propagating near the quasi-electrostatic imit can interact
with emergetic protons (80 - 500 keV), that are transported into the inmer
radiation belts. The waves may be launched either from the ground or gen-
erated in the magnetosphere due to the resonant interactions with trapped
electrons. The wave frequendes are significant fractions of the eguatorial
electron gyrofrequency, and propagate obliquely to the geomagnetic field.
Because of the finite wave specirum, the inhomogeneity of the geomagnetic
field is compensated by the frequency variation, thus the protoms stay in
gyroresonance with the waves over long distances along the field line. The
Fokker-Planck equation is integrated along the flux tube considering the
contribution of multiple resonances crossing. The guasiiinear diffusion co-
efficients in energy, cross energy/ pitch angle and pitch angle are obtained
for second-order rescnant interactions. They are shown to be proportional
to the electrc fields amphitudes. Numerical calculations for the second order
interactions, shows that diffusion dominates near the loss cone and is almost
negligible at large pitch angles. The dominant diffusion coefficient is in en-
ergy, although the cross energy/ pitch angle diffusion term is also important
for small pitch angles. This may explain the induced proton predpitation
observed in active space expediments [1, 2].

L INTRODUCTION

Experimental observations of proton precipitation by controlled VLF
transmission experiments occur in a wide range of plasmaspheric L shells.
Whistler waves {ransmitted from the ground are dacted along the field lines
to the magnetic equator where they become quasi-electrostatic [1, 2], and
interact with the protons in the emergy range (80 - 500 keV). It is also
known that lightning discharges [3] generate VLF waves that, after entering
the magnetosphere, can become trapped boundng back and forth between
hemispheres. These waves can also interact with energetic protons.

The waves considered here are such that the ratios of the wave frequen-
aes to the equatoral electron gyrofrequendes are 0.5 < w/Q. (L) < 1. The
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frequency range we propose to investigate has been observed in 2 number
of experimental papers [1, 2, 4]. In addition these waves have also been ob-
served by the electric field detector on the CRRES satellite [5]. The electric
field amplitudes as measured by the satellite.range between 10~° and 107 |
V/m.

The wavectors k, form an angle ¢ with the background geomagnetic field
B., which is assumed to be along the z direction. Figure 1 represents the
geometry of the problem. Near the equator the waves propagate obliquely

to the geomagnetic field with 60° < ¢ < 90°.
p -
@\\%w,m
S L :

Figure 1. Schematic representation of whistler (w, k), interact-
ing with electrons and protons near the equator. The coordinate
system used in this paper is depicted.

For proton-whistler interactions the particles’ parallel velocities v and
the wave phase velocities are in the same direction. The predominant fea-
ture of the proton-whistler interactions is the crossing of multiple harmonics
of the proton gyrofrequency [6]. In addition, interactions in the magne-
tosphere between the transmitted signals and energetic electrons can lead
to the amplification and frequency spreading of the original waves |7, 8].
Triggered emissions sometimes have amplitudes which are larger than the
initially transmitted wave [9]. They also have narrow spectral bandwidths
in frequency and propagation-angle which are closely limited to those of the
transmitied waves. Having a finite bandwidth of waves is a key element to
enhance the efficiency of proton-whistler interactions. Since resonant intes-
actions with energetic electrons are important sources of wave energy, the

536

85




proton-whistler interaction is a complicated process, involving more than one
plasma species.

Finite wave bandwidths allow protons and whistlers to satisfy the condi-
tions for second-order resonances [9, 10|, where inhomogeaeities of the mag-
netic field are compensated by frequency variations. Thus, the wave packets
and particles may remain in resonance for long distance along magnetic field
lines. The resonant wave frequency varies as a function of the distance along
the field line, compensating for the variation of the geomagnetic field.

This article extends previous work using a Hamiltonian formulation [11]
for test-particle interactions with the whistlers which, near the magneto-
spheric equatorial plane, appear Doppler shifted to some harmonic of the
proton gyrofrequency. The affected protons both gain energy from the waves
and decrease their pitch-angles while crossing many resonances. Here, we
evaluate the diffusion coefficients, for second-order, resonant interactions be-
tween protons and whistlers based on this Hamiltonjan formulation. The
diffusion coefficients are shown to be linearly proportional to the wave’s
electric field amplitudes.

The paper is organized as follows. Section II contains the resonance con-
dition for the proton whistler interactions at multiple harmonics of the proton
gyrofrequency. For a given bandwidth we present the equations that describe
the length of the interaction region along the flux tube, and the number of
interacting harmonics cover by this length. In Section III the quasilinear dif-
fusion equation is integrated along the flux tube considering the contribution
of all harmonics. Section IV contains the diffusion coefficents for the case of
a weakly inhomogeneous plasma, where the inhomogeneity of the magnetic
field is compensated by the frequency spread of the wave packet. Numeri-
cal applications are given in Section V. The main results of our anylisis are
summarized in Section VI.

O. RESONANT PROTON WHISTLER INTERACTIONS

We consider a whistler wave of frequency w and wave vector k, prop-
agating in a field aligned duct. The geomagnetic field B, is along the z
direction and ¢ is the angle between k and B,. The dispersion relation for

the refractve index 7 = ck/w is

2 _ (“’7/“’)2
T @) leosdl - 1 @

where w, and Q. are the electron plasma and gyro frequendies, respectively.
The electricfleldis E=% &, cos¥ —F &, sin¥ -2 &; cos ¥, where X, ¥
and Z are unit vectors; ¥ = k) z+ k) z—w ¢, and &y, k. are the components

537

86



along and perpendicular to B, of the wave vector. For the case of waves
propagating near the resonance cone, w ~ £.(L)|cos §|, the equatorial re-
fractive index 7%(L) > 1. The wave electric field which is linearly polarized,
bas components £/ < 1, and & /& ~ —sing/cos¢. In this case the
wave becomes quasi-electrostatic since E is almost in the direction of k, and
the group velocities v, ~ 1/7 are very small.

Near the equator, we approximate the Earth’s magnetic field by a parabolic
profile
S =14 () @)
QL) - rrL
where s ~ RpLA, Rg is the Earth’s radius, L is the magnetic shell param-
eter, A is the geomagnetic latitude, and rp = (v2/3)RgL. The equatorial
gyrofrequency is denoted by Q(L), and  stands for the gyrofrequendcies -
ther for electrons or protons at a location s away from the equator along the
field Line.

Whistler-proton interactions satisfy the resonance condition

@ - k"v” - l Q,, =0 (3)

where, { = 0,21, £2... is the harmonic number; £, is the proton gyrofre-
quency; and vy is the parallel components of the particle’s velocity. We
call p = sin?fz, where 6 is the equatorial pitch angle. Here 87 > 6,
where 6, is the pitch angle at the boundary of the loss cone, and g. the
corresponding value of u. As a function of the L shell, the mirror ratio is
o = p7' = L3 (4—3/L)*/2. Protons of energies less than a few hundreds keV,
satisfy the resonance condition with waves whose refractive indices 77 are very
large. In fact, the numerical calculations show that 9 > 50, for energies > 50
keV. As proton energies decrease and pitch angles increase, 7 increases. If
7 becomes too large the dispersion relation in Eq. (1) is no longer valid. In
this case, we must consider thermal corrections for the plasmaspheric elec-
tron population that supports the waves as described by Sazhin, [12]. These
thermal corrections limit the magnitudes of gy = 7 w/Q(L), to finite values.
These finite values of 7, yield the lower limits for the proton energies, and
the upper limits for the pitch angles that may satisfy the resonance condition
in Eq. (3).

Here we assume a given wave frequency spectrum of width Aw/w. The
interaction region along the flux tube extend to geomagnetic latitudes such
0 < A < AA, where

-1

‘ . 24w 2 w
(8A) = T o [1+ta.n ér (1—m) (4)

This interaction region is such that 0 < Q.~Q.(L) < AQ., where AQ./Q(L) =
4.5 (AA)®. The number of possible interacting harmonics, n, cover by this
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spectrum is,

_my cos @ 2 _
"= . @G T -1 Y ©
If p = v3/Q,, is the Larmor radius and v, is the perpendicular component
of the particle velocity, we show n < k. p. Combining Egs. (4) and (5),
vields the number of contributing resonant harmonics n as function of the
width of the spectrum Aw/w.
The interaction region along the field ine has a maximum exient in ge-
omagnetic latitude AAz, i.e. AA < AAp. We show [11]
m! Q(
() = = p (- =
Note that AAy increases with the particle energy and with the pitch angle.
By substituting in Eq. (4), AA by AAg, and solving for the bandwidth leads
to (Aw/w)r. If the widths of the spectrum are equal or larger than (Aw/w)L
the entire range of resonant harmonics is inciuded in the interactions.

) (6)

| cos ¢|

I11. THE DIFFUSION EQUATION

We normalize velodty v by ¢!, length s by r?, call = = £Q,(L), and
define x = Q,(L) rz/c ~ 1. The dimensionless electric field amplitudes are
q& -
o=t @
mycw
for i = 1,2,3, and where g is the proton charge.
The relative wave-proton phase angle is
’ w
&:L\+fds'r; &) = ——r 8
where A = arctanfv,/v.].
In terms of the three components of the normalized eieciric field ampli-

tudes, the diffusion equation as given by Lyons [13] is:

of M3 _ @ B ek (sl
or T kb (L) L;, /(u) (27)? [G P °°5‘P”u)]
&(n coséql-:—l%-’-_l) (\/;;)_,'LTL): ¢ s )

where the operator G is a fanction of 8/3y and 8/8v, and is defined in [13].
Here ‘rg is

T, = % [(51 —£2) Jesalko P+ (51 + €2) Te-1(ky P)] Z_; — &3 Jz(k_'_ P)
(10)
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where J; are Bessel functions of argument kj p.

To include the effects of the atmospheric loss cone, we introduce the term
F/Tatm. Bere Toem = 75/2, if 6 is within the loss cone and Toem = 00, if 6
is outside the loss cone. The proton bounce period, 75, is the the time for 2
particle to travel from one mirror point to the other and back again. Next
integrate along the flux tube by applying the operator: [*2 ds/(7s -v.,) to
both sides of Eq. (9), which becomes:

af “+co
3 -——— 2d T 11
s S e [Taenin
where
d 8
. = 5;[1:17 Il Ma]f-x—.
o 7] 7]
-a—v'[vi’D,',av-}-vD,, E‘] f (12)

The diffusion coefficients are obtained after integrating along the field lines
as follows:
1 T?

Do = [Q,,(L) g dr Tp v v |d2§/ds?| (23)
Doy = Duw=2p uﬂ'T(L—) -1 D., (14)
D = 4P [52— (L ) -1 D, (15)

where T, must be evaluated at the resonance, 75 v ~ 6v/25 x 1.3802 is
independent of v, and d*¢;/ds* will be defined in Eq. (22).

We define the diffusion functions
W(p,v) = B ‘i y2 (16)
Nps) = BY D an
Plv) = B3 D (18)
f{=-n
where
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depends on the width of the frequency spectrum. The summation extends to
all the resonant harmonics, where n is defined in Eq. (5). If the interaction
region, AA, spans the entire range of resonant harmonics, AA = AAr, then

we may take n — co.
Next take f = F(r.,) G(v,p), whete 7, =T v 15 independent of v and

4. We define the precipitation life times,
dF

;;:]'1 (20)

i =—[F

and #.m = Teom ¥, Which are independent of v. After substituting in Egs.
(11) and (12), we find that '

[-.i ; _—1-] v Gl = o [v/v(p,v)% + P(,2) 5‘%] G+

Tp  Faem v? Gp

1 0 d 8
LL wen & + Mo e

IV. THE WEAKLY INHOMOGENEOTUS CASE

By differentiating along the field line, we show [11]

dz 2
z%:a-!— cos&gf”—vi‘l'rc (22)

The inhomogeneity factor a depends on the variation of the geomagnetic
field, and the frequency spectrum,

w dn B ‘ 1 4
a Km Q,(L)ZQ—: cos ¢ — (L) cosqu mz +
L dn cos §) dwg | (23)

GL)  dw  ds

where wg = w/ cos ¢, and we assume that d¢,/ds = 0. .
For sufiiciently large waves amplitudes, and for a wave spectrum such that
we can neglect the contribution of a in the right-hand-side of Eq. (22), the
inhomogeneity of the magnetic field is compensated by the wave spectrum
and the solutions of the equations of motion resemble that of a homoge-
neous plasma. From Eq. (13) and (22) we obtain that the energy diffusion
coefficient is:
P S . (2
"7 8(q cosP)? TRV v ¢ )
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The other coefficients are given in terms of D,, by means of Eqs. (14) and
(15). A comparision with Eq. (10) shows that D,, depends linearly on the
electric fields amplitudes.

The diffusion functions W, and P, are given by Eqs. (16) — (19).
If the interaction region Af), extends to the entire spectrum of resonant
harmonics, we may take n — oo. In this case, we can add over all the
harmonics, by considering that (Q,(L)/w g£) < 1 we obtain

1 1

W) = B e o (20 ~ s cosba] (29)
N(or,) = 2W(95) [ta.n@; tang, — sin® GL] (26)
P(6;) = 4W(6s) [tanfy tang, — sin O] - 27)

For small pitch angles sinf; — 0, energy diffusion dominates over pitch
angle diffusion.

In the strongly inhomogeneous case, the changes in the magnetic field and
the wave spectrum are such that a # 0. In this case Eq. (22) is approximated
as, d*¢;/ds* ~ a and protons are only able to achieve first-order resonances.
For waves near the quasi-electrostatic limit, the energy diffusion coefficient,

becomes
D= w 2 3 wy
T RQ,(L) 27Ty Q(L)
The other coefficients are readily obtained combining Eqs. (28), (14) and
(15). By comparing Eqs. (28) and (24), we see that for second-order resonant
interaction the diffusion coeffident is ~ €, the amplitudes of the electric
fields. For first-order interactions ~ €2, and thus the diffusion coefficient for

first-order resonances is much smaller than for second-order interactions.

v [T7 (1= )] (28)

V. NUMERICAL APPLICATIONS

We have carried out some numerical calculations based on the model we
presented in the previous sections for the shell L = 3.5, where the equatorial
geomagnetic field is B, = 7.25 x 10? nT. The ratio between the electron
plasma frequency and the equatorial cyclotron frequency is w,/Q(L) = 7.9.
The width of the equatorial loss cone is 8, = 6.5°. Calculations were con-
ducted for the three frequendcies w/Q.(L) = 0.5,0.75 and 0.9.

In Figure 2 we show AAy (in degrees) as given in Eq. (4) versus the pro-
ton energy (in keV), for the three frequencies. For the left and right pannels
8z = 6.5° and 25°, respectively. The resonant interaction along the flux tube
is such that AQ./Q(L) = 4.5(AAL)*. As the pitch angle increases so does
AA;. The width of the frequency spectrum corresponding to the maximum
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extent of the interaction region, is (Aw/w)y is defined at the end of Section

II.

) o
o GL = 6.5 o eL = 25
6 12
o | ) i

< O+ 8 i
< -

2

] 1 1 0° ' 1 1 1
100 300 500 100 300 500
Epnergy (keV)

Figure 2. Maximum extent in the geomagnetic latitude for reso-
nant interactions versus the proton energy in keV.

In Figure 3 we represent (Aw/w)y as function of the energy and for the same
parametess as in Fig. 2; for the left and right panzels 67 = 6.5° and 25°.

8 =65" e =25

o
a

8

(A(nltn)b

o
purt

100 300 500
Energy (keV)

Figure 3. Bandwidth of the frequency specirum corresponding to
the geomagnetic latitudes of Fig. 2 versus proton energy in keV.

We see that near the loss cone ithe bandwidth of the spectrum needed to
cover the entire interaction region for second-order resonant protons, is much
smaller than for larger pitch-angles. The bandwidth increases with increasing
energy, 2nd as w/Q. (L) decreases. Thus particles are more easily scattered
in pitch angles for smaller energies (~ 100 keV) and for piich-angles that
are near ihe loss cone. Because the bandwidth of the spectrum becomes
unrealistically large for larger pitch angies and emergies, the protons may
not stay in gyroresomance with the waves over ihe entire range of resonant

543

92




harmonics and the interaction is not very effident. Thus we expect most of
ihe diffusion take place near the loss cone and at small energies (i.2. ~ 100)

keV.
We have periormed some calculations of the difusion coeficients for

second-order resonant interactions. The diffusion functions are given in Eqs.
(16) — (18), where the aumber of interacting harmonics 7, is a function of
the width of the spectrum Aw/w, by combining Eqs. (4) and (5). They
depend on the normalized clectric field ampiitudes £ = 2.5 X 10¢ x f. £,
where f. = Q(L)/w, and £, the electric field amplitade, shouid be givez in
V/m. The enezgy diffusion coeficient is given in Eq. (24). The czoss pitch
angie/energy and pitch angle coeficdents are obiained combining Eq. (24)

with Eqs. (14) and (15).

@D
=
2
]
=
[S]
b=
=
=
g
Oa .2)-— = 0.9
E 10 Ge
- 1. W
a
0.5
N
0.0 oL
o2 04 06 08
Sin ©1,

Figure 4. Diffusion functions normalized to the values of the en-

ergy term at the edge of the loss cone versus sin 8z, for 8z > 6.5°.

Figure 4 gives the normalized diffusion coefficients versus sin z,for by > 6. =

544

93




6.5°, for 100 keV protons, and for a spectral bandwidth of Aw/w = 0.01.
The upper and lower pannels correspond to w/Q(L) = 0.75 and 0.9, respec-
tively. The diffusion functions are normalized to the value that the energy
diffusion function, W, takes at the edge of the loss cone which is represented
by we = W./e;. Here g; ~ £ sing,, and W, is given by Eq. (25) taking
fr = 6.

Significant diffusion takes place mostly near the loss cone. It extends to
larger pitch angles as w — Q. (L). The reasons for this have already been
explained since near the loss cone protons and whistlers stay in gyroreso-
nance over the entire range of possible resonant harmonics that contribute
to the interaction. We also observed that the dominant diffusion coefficient
is the energy term. However the contribution of the cross energy/pitch an-
gle coeffident is also significant. For w/Q(L) = 0.75, the normalized energy
diffusion function at the edge of the loss cone is w, = 2.5 x 1073, For
w/Q(L) = 0.9, w. = 3. x 107%. We have calculated w, for 500 keV protons,
and w/Q(L) = 0.75, and found that i.e. w, = 2. x 10~7. In addition, protons
and waves do not stay in gyroresonance over the whole length of resonant
interaction for larger emergies even at the edge of the loss cone. Thus as
explained above, second-order resonant diffusion will is more efficent for
protons with energies of ~ 100, keV and with pitch angles are near the loss

cone.

VI. CONCLUSIONS

We have investigated the diffusion of protons by quasi-electrostatic whistler
waves, by using the Fokker-Planck diffusion equation. We assume a spectrum
such that the ratios of the waves- to the equatorial electron gyro-frequendes
are 0.5 < w/Q.(L) < 1. The main results of our theoretical analysis and the
numexrcal applications are:

(1) For second-order resonant interactions the inhomogeneity of the geo-
magnetic field is compensated by the frequency vadation along the field line,
and protons and waves can stay In gyroresonance over long distance along
the field lines.

(2) The extent of the regions of resonant interactions along the flux tube
decrease with the protons energies and pitch angles. The interactions are
most efficent for protons of relatively small energies (~ 100 keV), and small
pitch angles.

(3) For second-order resonant interactions, the diffusion coefficients are
linearly proportional to the amplitudes of the eleciric fields .

(4) The dominant diffusion coeficient is in energy but the cross energy/
pitch angle coeficdents is also significant for pitch angies near the loss cone.
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Proton Whistler Interactions Near the Equator in the Radiation Belts
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The interactions of energetic protons with whistlers propagating near the quasi-electro-
static limit, are investigated using a test particle, Hamiltonian formalism. We assume that
wave packets exist with finite bandwidths of frequencies, which are close to the equatorial
electron gyrofrequency and propagate obliquely with respect to the geomagnetic field.

Near the equator the protons interact wit

some harmonic of their cyclotron frequency.

L the waves which appear Doppler shifted to

In an inhomogenecous geomagnetic field the

spacing between cyclotron harmonic resonances is very small. The Hamiltonian equations
of motion are solved including multiple, independent harmonics for each resonance. The
wave frequency varies as a function of the distance along the field line, with only one

frequency being resonant at a given point.

is compensated by the frequency variation.

Thus the inhomogeneity of the magnetic field
The proton whistler interactions satisfy the

conditions for second-order resonances for all the harmonics. The resonances may also
overlap in phase space, leading to significant changes in the protons energies and pitch
angles. The combined contributions of positive and negative harmonics allow protons to

diffuse toward smaller pitch angles.

Numerical calculations applying this formalism to

parameters relevant to the plasmasphere and controlled VLF transmission experiments

are presented.
1. INTRODUCTION

The interactions between whistler waves and elec-
trons in the plasmasphere [see, Lyons and Williams,
1984, and references therein], account for phenomena
such as energetic electron precipitation [Imhof et al.,
1986;Inan, 1987;Schulz and Davidson, 1988] enhance-
ments of naturally occuring waves [Kennel and Petschek,
1966; Bespalov and Trakhtengerts, 1980], and the arti-
ficially triggered emissions [Helliwell, 1967, 1988; Dys-
the, 1971;Sudan and Ott, 1971]. These phenomena are
most likely due to the resonant interactions at some har-
monic of the electron gyrofrequency. The first harmonic
and the Landau resonance play the most important role
in the electron whistler interactions, although higher
harmonics may also contribute [Villalon et al., 1989;
Villalén and Burke, 1991]. They are most significant
at the magnetospheric equator where the geomagnetic
field changes slowly allowing particles to stay in reso-
nance over relatively long distances. The component
of the wave phase velocities along the Earth’s magnetic
field w/k of whistlers and the parallel velocities v of
resonant electrons are opposittely directed.

Interactions of whistlers with protons have not re-
ceived as much attention as those with electrons [Gen-
drin, 1972]. However, a pumber of experimental ob-
servations [Kovrazhkin et al., 1983, 1984;Koons, 1975,
1977) have shown that VLF transmission pulses can
precipitate 80- to 500-keV protons into the ionosphere.
They occur in a range of plasmaspheric L shells, and are
due to the resonant interactions near the magnetic equa-
tor. In the quasi-electrostatic limit [Sazhin, 1986;Mor-
gan, 1980] the whistlers satisfy the relationship, w =~

Copyright 1993 by the American Geophysical Union.

Paper Number 93JA00727.
0148-0227/93/93JA-00727$05.00

Q.(L) cos, where ¢ is the angle between the wave
vector, k, and the geomagnetic field, Bo and Q.(L) is
the equatorial electron gyrofrequency. Here the parallel
component of the wave vector k| is large and the res-
onant energies of protons relatively low. In this paper
we assume that the propagation properties of waves in
the plasmasphere are described by a dense population
of cold particles of ionospheric origin whose distribution
function is isotropic in pitch angle. The predominant
feature of the whistler proton interactions is the cross-
ing of multiple harmonics of the proton gyrofrequency
[Shklyar, 1985]. As summarized in Figure 1, resonant
protons and whistlers travel in the same direction, with
the wave phase velocity which may be slightly larger
or smaller than the proton parallel velocity, depending
on the interacting harmonics. By way of contrast, res-
onant whistler electron interactions travel in opposite
directions and the dominant harmonic is the first.
Shklyar [1986] devised an electrostatic, single-frequen-
cy wave theory to explain the proton whistler interac-
tions as causes of experimentally observed proton pre-
cipitations. It is based on a Hamiltonian analysis that
includes multiple-cyclotron resonances in a strongly in-
homogeneous field. He finds that for large wave ampli-
tudes (~ 102 V/m), resonances can overlap and lead to
pitch angle diffusion toward the loss cone. Here we also
present a Hamiltonian formulation of proton whistler
interactions for multiple-resonances crossing. However,
we use an electromagnetic formulation of the Hamil-
tonian, and take the quasi-electrostatic limit near the
magnetic equator where most of the significant interac-
tions occur. Our work also differs from Shklyar’sin that
we invoke interactions with the multiple-frequencies of
a propagating wave packet. We assume the wave fre-
quency with which a test particle interacts, is a func-
tion of the distance along the field line s, with only
one frequency being resonant at a given location. Thus
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Fig. 1. Schematic representation of whistler (w,k), interacting
with electrons and protons near the equator. The Earth's dipole
magnetic ficld is Bo, the geomagnetic latitude is A, and s is the
coordinate along the flux tube. The coordinate system used in
this paper is depicted here.

the inhomogeneity of the magnetic field is compensated
by the frequency variation. Because of this, protons
and whistlers satisfy the conditions for second-order,
resonances making the interactions more efficient. If
we restrict ourselves to a wave of constant frequency
[Matsumoto, 1979), large electric field amplitudes are
required to produce considerable changes in pitch an-
gle.

As a matter of fact in VLF transmissions experi-
ments natural whistlers whose frequencies are close to
the transmitter frequency, are also amplified due to
the linear and nonlinear interactions with the radiation
belt electrons. The amplitudes of the stimulated waves
sometimes become larger than the originally transmit-
ted wave [Dowden et al., 1978]. In this paper we assume
there exists a spectrum of wave frequencies of compa-
rable electric-field amplitudes. Based on these assump-
tions, we show that the field amplitudes required to
overlap the resonances and achieve efficient interactions
with the protons, are relatively small (~ 107* V/m).

Our main contribution is a detailed analysis of con-
ditions leading to second-order resonances [Nunn, 1973;
Carlson, et al., 1985], which are responsible for the ef-
ficiency of the interactions. We call

=1-1 cosqbi—zl—l%-’? (1)

where £ = 0, 41, £2, ..., 17 is the refractive index, and 2,
is the proton gyrofrequency. In the articles by Shkiyar
the proton whistler interactions only satisfy first-order
resonant conditions, i.e., {; = 0; and the changes in par-
ticle’s energy and momentum are linearly proportional
to the wave electric fields. Second-order resonant par-
ticles must also satisfy the condition d(;/ds = 0, which
requires a frequency variation, w(s), along the field line.
Here d/ds represents differentiation with respect to dis-
tance along a given field line. Second-order resonant
protons interacting with frequency-varying, w(s), wave
packets encounter multiple harmonics of their gyrofre-

quency along the field lines. The acumulative effect of
the multiple-resonance crossings is a change in the par-
ticle’s momentum and energy proportional to the square
root of the electric fields. Note that this result resembles
that of a homogeneous plasma [Chirikov, 1979] but, be-
cause of the geomagnetic field, multiple resonances are
present in small distances along the field lines.

The paper is organized as follows. Section 2 con-
tains a description of the whistlers propagating near the
quasi-electrostatic limit in an inhomogeneous magnetic
field which, near the equator, we approximate as having
a parabolic profile. In section 3 we analyze resonance
conditions at multiple harmonics of the proton gyrofre-
quency and find the locations of these resonances along
the flux tube. We show that the separation distance be-
tween nearby resonances is proportional to [m,/m,]*/?
where m, , are the electron and proton masses, respec-
tively. In section 4 the Hamiltonian equations are pre-
sented. After reducing the problem to one dimension
and isolating a single cyclotron resonance, the differ-
ential equations for the action I, angle £, variables as
function of the distance s along the flux tube are de-
rived. In section 5 we solve these equations near res-
onance by using a Taylor expansion. The changes in
action, AI, energy, and pitch angle are calculated for
each resonance. Resonances overlap if AT, is larger than
the separation, |Iz41 — I;|, between nearby resonances.
Section 6 contains the formulation of the second order-
resonances.

The numerical applications are presented in sections
7 and 8. We assume a bandwidth of frequencies and

- wave propagation vectors such that the second-order

resonance condition and overlapping criterion are met
for all the harmonics. We study interactions along the
L = 3.5 geomagnetic shell; the wave frequencies are
such that 0.5 < f7! < 1, where f! = w/Q.(L). As
an example we study the equatorial pitch angle to be
8(L) = 7.5°, where tan6(L) = vy /v, and present two
examples for the particle energies of ~ 150- and 500-
keV. Resonances are confined to within about a few
degrees latitude of the equator; positive £ > 0, and
negative £ < 0, harmonics are considered. We show
that although smaller frequencies, i.e., w ~ 0.5Q.(L),
yields larger changes in pitch angle than higher frequen-
cies, w — .(L), the band-width of the frequencies and
wave angles needed for f;! = 0.5, are larger than for
frequencies w — Q.(L). We add the contributions of all
resonances, taking the same electric field amplitudes for
the whole spectrum of waves. For amplitudes of about
10~* V/m, the pitch angles can decrease one degree or
more in a single bounce time. Section 9 summarizes our

results.

2. QUASI-ELECTROSTATIC WEISTLER WAVES

Consider a whistler wave of frequency w and wave
vector k, propagating in a field aligned duct. The geo-
magnetic field B, is along the z direction and ¢ is the
angle between k and B,. The refractve index n = ck/w
satisfies the dispersion relation

2 _ (wp/w)? '
m= (Qe/w)zl,cos #l—-1 )
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where w, and €. are the electron plasma and gyro fre-
quencies, respectively.
The electric field is

E:ﬁf]_ COS‘I’—?gz sin‘I’—ié'g, cos ¥ (3)

where X, ¥, and Z are unit vectors; ¥ =k z+kjz—-w t,
and kj, k) are the components along and perpendicular
to B, of the wave vector. The ratios of the electric field
components are

£ 1
A

& n

(“"p/“’)2
(Qe/w) — | cos @]
(4)

& _ 1—(wp/w)’ ~ (n sin )
& 7% sin¢ cos ¢

For the case of waves propagating near the resonance
cone, w ~ .(L)|cos ¢|, the equatorial refractive index
n?(L) > 1. The wave electric field which is linearly
polarized, has components £/€; < 1, and &/& ~
—sin$/cos$. In this case the wave becomes quasi-
electrostatic since E is almost in the direction of k, and
the group velocities vg ~ 1/7 are very small.

Near the equator, we approximate the Earth’s mag-
netic field by a parabolic profile

Q s .5

o =1 6D )
where s =~ RgLA, Rg is the Earth’s radius, L is the
magnetic shell parameter, A is the geomagnetic lati-
tude, and rz = (v/2/3)RpL. The equatorial gyrofre-
quency is denoted by Q(L), and Q stands for the gy-
rofrequencies either for electrons or protons at a loca-
tion s away from the equator along the field line. For
interactions that occur near the equator the cold plasma
density and cos ¢ remains nearly constant over the re-
_gion of interaction along the flux tube [Bell, 1984, 1986].
The refractive index 7 changes according to (2) and
the magnetic field profile in (5). For quasi-electrostatic
whistlers cos ¢ ~ w/S; if we consider interactions that
occur within 5° off the equator the variation in ¢ will
be less than one degree.

3. RESONANT PROTON WHISTLER INTERACTIONS

Interactions between whistlers and protons satisfy the
resonance condition

w— k“v" —£8Q,=0 (6)

where, £ = 0,41, £2... is the harmonic number; €, is
the proton gyrofrequency; and v is the parallel com-
ponent of the particle’s velocity. We call p = sin? (L),
where 6(L) is the equatorial pitch angle. Here 6(L) >
6.(L), where 6.(L) is the pitch angle at the bound-
ary of the loss cone, and . the corresponding value
of 4. As a function of the L shell, the mirror ratio
is 0 = 1/p. = L3 (4 — 3/L)Y/2. To zero order in
the electric field amplitudes, the first adiabatic invari-
ant is conserved. Then we may write for the parallel
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and perpendicular components of the particle velocity
v: oy = o[l - pQ/QL) Y2, vy = v[uQ/Q(L))Y/2. Note
that as the particles and waves move away from the
equator, the parallel velocities vy of particles decrease,
while the waves’ phase velocities w/kj increase.

For purpose of bookkeeping it is useful to introduce
an integer variable v > 0 such that if a proton inter-
acts at the equator with the harmonic £ = —v, then its
velocity is given solving for the equation: w — kj v =

—vQ,(L),

Tv 1 1
¢ n(L) cos¢ (1—g)

1/2 (1 +v fP) (7)

where f, = Q,(L)/w < 1 and 7(L) is the equatorial
value of . The cyclotron harmonic number v, will be
given in terms of k; vy /€2, after we analyze the Hamil-
tonian equations in section 4.

We solve (6), using the parabolic magnetic field pro-
file in (5). See Appendix A for details. If the particle’s
velocity is as given in (7), the geomagnetic latitude A,
of higher harmonics turn out to be

me 1
E(l-{—l/) (fe ]COS(ﬂ—l)m (8)

‘where f, = Q.(L)/w ~ 1, m.p are the electron, proton

masses, and

o(6) = 72 (leosdl = 2) +leosgl. (9)

Near the resonance cone g(u) ~ |cos ¢|. The distance
along the flux tube at which the resonant interaction
occurs is given by, s, = RgLA,. The distance be-
tween the location of two subsequent resonances is ob-
tained from As; = RpL(A¢+1 — A¢). Since m./m, and
(f. |cos ¢| — 1) are small, resonances, as given by (8),
occur at close separation distances.

The harmonics that contribute to the resonant inter-
actions are such that £ > —v. The Landau resonance
occurs at a location, A,, off the equator given by solv-
ing (8) with £ = 0. The negative harmonics —» < £< 0
are located along the flux tube-at magnetic latitudes
0 < A < A,. For waves and particles to interact at
the negative harmonics, the wave phase velocity w/kj
is slightly smaller than the protons parallel velocities
v Positive harmonics, 0 < £ < v, are located at equa-
torial magnetic latitudes A > A,. Here w/ky is slightly
larger than vy. For the Landau resonance w [k = -

4. TEE HAMILTONIAN EQUATIONS
We normalize velocity v by ¢~1, length s by rzl, call
7 = 1Q,(L), and define k = Qp(L) rr/c ~ 1. Hence-
forth we only refer to these normalize variables. The
dimensionless electric field amplitudes are

q&;
£; =

- mMpCWw K (10)
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for i = 1,2,3, and where ¢ is the proton charge. We
define the canonical velocities,

Vil = a_ €3 sin¥
* (11)

Vi =(v—:-+el sin ¥)% + (v:y + &, cos ¥)?

where v}, vz, are the components of the physical ve-
locity in the z, z and y directions, respectively. The
relative wave-proton phase angle is

& =2 +,/(; ds' rg k"(s’) - Q—P%-)' T (12)

where ] )

Vy + K &3 cos ¥
\ = arctan | L—mm—o—
v+ ke sin¥

The canonical action-angle variables are I and A, where

_ Vi 9(0)
I= 2 (14)

To first order in the electric field amplitudes ¢;, the
normalized, time-dependent Hamiltonian is a function
of the canonical pairs of variables, (], s), and (Z, )
[Shklyar, 1986; Menyuk et al., 1987; Ginet and Heine-
mann, 1990]

V2 Q
A N L
M=+l gt
> IQ
t;@ sin &, {53 Vi Je(kLp) - [2_9(737]1/2 I‘A}.

(15)

Here

I‘t = (61 - €2) .7(+1(k_LP) + (51 + 52) \ﬁ—l(klp) (16)

where J, represents a Bessel function whose argument
is k) p, where p = (cx/Qp) [2IQ/Q(L)]*? is the Lar-
mor radius. The number of harmonics that effectively
contribute to the summation in (15), [£| < v, reflect the
behaviors of Bessel functions with large arguments and
is discussed in Appendix B.

For particles crossing an isolated cyclotron resonance,
we need only consider a single term £ in the summation
in (15). In this case, we find the following constant of
motion [ Walker and Ford, 1969]:

w

- h—;(—L_) I 1n

Cg:[H

Defining v such that ® = vZ/2 + IQ/Q(L), leads to

3 1/2
w={3iC (a;m"a%r)”} (18)

The problem can be reduced to one dimension, by con-
sidering that

d .
(—; =V +e3 Te(kLp)sin&,
-
(19)
= +—]:-[ 19 ]1/2F sin &,
=0T Y 20(2) ¢ '

If &; < 1, keeping terms to first order in e; yields the
equation of motion for I as a function of s

dI

o= 2 cosé& To(I,vy) (20)
_where
1 IQ ”
T((I, ‘vg) = —€3 ‘Z(k_[_p) -+ v—l- [.2_(2_(1;—)]1/“ PL (21)

If there is no interaction then dI/ds = 0, and I is a
constant of motion.

Combining (12) and (19) leads to

dfl _ dA w
ds ~ ¢ ds +roky - Q,(L) vt %
1. IQ - (22)
1 1/2 .
{1+v42 [ZQ(L)] T, smfl} .

The evolution of the gyro phase angle A as function of

- s is obtained from the Hamiltonian equation d\/dr =

dH/3I and (19). As ¢; — 0, then

dé, 8, - w
2 — kyrr + QP(L e (23)

The gyroresonance condition is obtained by setting (23)
equal to zero. This is satisfied at s = s; (the resonance
location) defined as s, = 3/\/2_ A;, where A, is given
in (8). By comparing (6) and (23), we see that v, =
vy /&. By means of (23) we show that, for gyroresonant
protoms, the phase-angle &, satisfies the second-order
differential equation

d?&, C(Byrr)® 1 dl
ds? ~ e v ? ds (24)
Here 4
Ye
=2t =L 5
T Q@) ds (25)
where
dky 1.¢L C.
Y = QQ(L) rL E-Q—e' + _l- [E + E] (25)

and dQ/ds = 2s Q(L). The pair of coupled equations
(20) and (24) describe the evolution along the field line
of the physical action, I = (vy/v/2x)* Q(L)/9Q, as func-
tion of the phase-angle for gyroresonant protons. Here
vy = (v} + v2)}/2, is the perpendicular component of
the particle velocity normalized to ¢~ 1.

929
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By using the constant of motion in ( 17), we find that
the evolution of the particle kinetic energy, W, as func-
tion of the distance s is given solving for

aw w dI

T M0) & (27)

We define x = sin?6 Q(L)/Q, where 6, the local pitch

angle, is a function of s. Note that if there are no waves -

(i-e., & = 0) x = p, a constant. Rewriting I = Wy,
the evolution of x as function of s is

(28)

where dI/ds and dW/ds are given in (20) and (27),

respectively.

5. SOLUTIONS TO TEE EQUATIONS
OF MoTION NEAR RESONANCE

At the resonance (s = s;), the parallel velocity and
action are

Q(R)

v(R) = wmoosg 1S h‘m) (29)
1,(r) = 2ABS 4 (30)

2 TR/

where f, = Q,(L)/w , Q(R)/Q(L) = 1+ 2, and (R)
denotes resonant values. Combining (18), (29), and (30)
yields

£ 2 1 _SB)
C, = -2- vg(R) -1 (fp Q(L) ) (31)

Using a Taylor expansion to solve the coupled (20)
and-(24) under the assumption that s is very close to
the resonance length s, [Shklyar, 1986], yields for the
physical action

IxLB)+ (e -s) ()

and for the relative wave-proton phase angle

(2)

& = E(B) + & (s~ ) + 2

(s —s4)? (33)
where I,(R), ¢/(R) are constants. Here (dI/ds)r) is
given by (20) and (21), with & = £&,(R),I = I(R), and
v = v4(R), evaluated for resonant particles. For pro-

tons satisfing the resonance condition, L(l) = 0. For

protons staying in gyroresonance with sucessive har-
monics, cos[{,(R)] = +1. Substituting (33) into (24)
leads to

(Fyrz)?

61(2) —_ QL(R) + v[(R) ‘} (g)(}z) (34)
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where a,(R) is evaluated at the resonance.

The change of the action I after crossing the £’th res-
onance, Al, is obtained by integrating (20). Approxi-
mately we find

dI
Al = (2—;)(3) 68y = ¢ T[(R) ésy (35)

where T,(R) is given by (21), substituting I = I,(R)
and v, = v;(R). The resonance width §s, is defined as

+00
68[ = /

Combining (33), (34), and (36), shows that

dscos&, (36)

1/2
§s¢=T(1/2) cos(r/4) [I??T’I] (37)

The change in the particle’s kinetic energy, AW =
(dW/ds)(r) 6s¢, can be obtained from (27) as approxi-

mately
(54 w
W= mAI = m‘rz(R) 581 (38)
By means of (28) we find that Ay is
1 w
Ax = W[l -k m] Al (39)

We define £, as the closest integer to uw/$,(L), and
consider three cases: (1) —co < ¢ <0, (20 <<y,
and (3) £, < £ < co. In case 1 for the negative harmon-
ics —v < £ <0, (39) shows that Ax/AI > 0. Thus,
from (38) if AT < 0 and AW >0, a particle’s pitch an-
gle decreases toward the loss cone, i.e., Ax < 0. For the
Landau resonance AT = 0 and Ax = ~pAW/W(R), if
Ax < 0 then AW > 0. The positive harmonics are lo-
cated off the equator at geomagnetic latitudes A > A,
as given in (8) and (9). In case 2, 0 < ¢ < £, and
Ax/AI > 0. Thus if AJ and AW < 0, the pitch
angles will decrease. In case 3, £ > £,, we find that
Ax/AI < 0. By taking AJ and AW > 0, then Ax < 0.
In Figure 2 we represent the net particle diffusion
along single wave characteristics defined as
(v — w/ky)? + v2 = constant (40)
A proton whose location in phase space is indicated by
a dot, at the intersection of the characteristic with the
constant energy surfaces, diffuses toward smaller pitch
angles as indicated by the arrows. For the negative
and positive harmonics, w/ by < v and w/ ky > vy,
Tespectively. If 0 < £ < £,, a proton diffuses toward
decreasing energy and pitch angle as indicated by the
arrow. For £ > {4, and ¢ < 0, the particle’s energy
increases as the pitch angle decreases. )
The interaction of waves and particles is more effec-
tive if resonances overlap. The criterion for overlapping

of resonances is
Al
— > 1 41
LB -LE) > ()
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Fig. 2. Schematic phase space representations of particle diffusion
paths toward smaller pitch angles following wave characteristics
as defined in (40). The small circles represent single-wave char-
acteristics; the large circles, centered at the origin, surfaces of
constant energies. The initial position of the proton is indicated
by a dot. It diffuses depending on the value of the harmonic
number £ and according to the directions indicated by the ar-
rows. Here £, > 0 is defined after (39). The particle'’s energy
decreases for 0 < £'< £,, and increases for all other harmonics.

where AJ is given in (35), and I,_;, I, are defined by
(30). In this case, particles continue in resonance with
the waves over longer distances along the flux tube and
more effectively interchange energy with them. Because
of the behavior of Bessel functions, in our numerical cal-
culations we find that sometimes two nearby resonances
such as n — 1 and n do not overlap. However even if
n — 1 and n do not satisfy the overlap criterion, it may
be that n—1 and n+1 satisfy (41) with AT as obtained
for any of the values n + 1. In this case the contribu-
tion of the n’th resonance is small but there is still a
resonance overlap.

6. SECOND-ORDER RESONANCE

In the strongly inhomogeneous case the contribution
of the magnetic field is larger than that of the resonance,
we may neglect the term proportional to (dI/ ds)(r) in
(34), which leads to

dI 1
I=(— T(1/2) cos(x —_— 42
AT= (G 70/2) costefs) [l—2—1] (22
where 7,(R) is given by (26) and must be evaluated at
resonance. Note from (35) and (21) that the change
in the action is proportional to the electric field ampli-
tudes. These interactions are called first-order because

df;/ds = 0 and d?¢,/ds? ~ a,(R) # 0.
In the weakly inhomogeneous case, the contribution
of @;(R) in (34) is smaller than that of (df /ds)(ry, then

ar, 1Y? [2lve(R)[]2
ar= (Gl Tasm e cos(vr(/g

The change in particle momentum I is now propor-
tional to the square root of the electric field amplitudes,

172 e call this the second-order resonance condition

i .

£

because to zero order in the electric field amplitudes
dq & / d32 >~ 0.

Note that for a fixed constant value of w, the second-
order resonance condition can only be satisfied in equa-
torial interactions. For constant-frequency waves, the
electric field amplitudes required to satisfy second-order
resonance conditions for a given harmonic (i.e., a(R)
is neglected in (34)), are such that

- 1/2]3
[ﬂ\/'2=j;= (% I('gé)(}t)o J > v(R) I'(1/2) cosx/4
(44)

Here &y rz = 7 & cos ¢ w/Qp(L), where v, = v/ is
given by (29), and « is defined before (10).

By allowing for wave packets with finite bands of fre-
quencies, resonant protons experience w as a function of
s. Note that 7y = ncos ¢, depends on w and ¢ through
the variable wy = w/cos ¢. The inhomogeneity factor,
@y, in (24) as function of a varying wy(3), becomes

“ETQT) ds T Gy ds (43)
By changing wy so that @,(R) = 0 for interactions
off the equator, the second-order resonance condition
is satisfied regardless of the electric fields amplitudes.
In this case, the change in particle energies are propor-
tional to 53' 2. We consider the conmtribution of only
one frequency at any given point along the field line
and neglect all others contributions because they are
small ~ e. Thus, in a wave of varying frequency, w(s),
protons stay in resonance longer than in a constant-
frequency wave. This is because the inhomogeneity of
the magnetic field is compensated by the frequency vari-
ation along the field line. Note that the result AW ~

e} /2 resembles that obtained in 2 homogeneous plasma
[Menyuk and Dobrot, 1987]. The electric fields ampli-
tudes needed to satisfy the overlapping criterion in (41),
are smaller for second-order resonant particles.

In the case of the Landau resonance, the frequency

variation obtained from (45), is

S S R N
ds ~  (dmy/dwg) ldn. " ™ 3 40, s

where dn/dQ., dny/dwg are obtained from (2), and
dvy/dQ. = —v} /[2Q.(L) vy]. By setting (45) equal to
zero, we obtain the frequency increment for each reso-
nance located at a distance s, from the equator,

Awgy ’ 2 C 1
—— =S 47
w Ve St TL @ w (dn||/dld¢) ( )

Note that Aw, is proportional to the harmonic number
£, see (8). Integrating (46) reduces to (47) for the case

Next we assume that cos ¢ is also a function of the
distance s, due to a spectrum of waves that exists near
equatorial regions. We call $(L) and (L) the equatorial
values of the wave angle ¢ and the action I, respectively.
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By taking I,(R) = I(L) for all harmonics ¢, where I(L)
satisfies the resonance condition at the equator and I, is
given in (30), the overlapping criterion (41) is satisfied
regardless of the amplitudes of the electric fields. Then
the variation of cos ¢(s) as function of the frequency w
and angle ¢(L) as defined at the equator, is

n(L)

1—p
n(R) ™

1/2
1-pQ(R)/ Q(L)J

cosg
cos$(L) ~ [
(48)
1-¢ f, UR)/Q(L)
1+vf,

where 7 ~n(L) + (dn/dQc)z) [2(R) — Q.(L)]. The
frequency shift Aw, is given after substituting #(s¢) in
(47). If the wave spectrum is such that the harmo-
nics overlap their effect can be added together, then
the changes in a particle’s energy and momentum are
proportional to €/2. The interaction between waves
and particles become more efficient than for a single
frequency wave with constant wave angle é(L).

7. NUMERICAL APPLICATIONS:
THE RESONANT HARMONICS

The density of cold plasmaspheric electrons, N, is
approximated as a function of the magnetic shell L,
by nc = 3 x 10° (2/L)* cm~3 [Chappell et al., 1970].
The equatorial magnetic field is also a function of L,
B(L) = B,/L?, where B, =3.11 x 10* nT, is the mag-
netic field at the Earth’s surface. As an example we
study proton whistler interactions that take place at the
L = 3.5 shell. Then according to the density and mag-
netic field models given above, the ratio between the
electron plasma and equatorial cyclotron frequencies is
wp/Qe(L) = 7.9, where Q,(L) = 1.275 x 10° rad/s.
The proton gyrofrequency is 2,(L) = 69.44 rad/s, and
& = Qp(L)rr /c = 2.43. The width of the equatorial loss
. cone is f.(L) = 6.5° and we consider particles whose

pitch angles are (L) = 7.5°. The dimensionless elec-
tric field € = ¢€/mpcw = 2.5 x 10~% £, £, where £
should be given in volts per meter and f. = Q.(L)/w.
Calculations were conducted for wave frequencies such
0.5< f71 < 1, and for [cos 4| ~ f1. Table 1 gives the
approximate values of relevant parameters for three dif-
ferent frequendies, i.e., f1.= 0.5, 0.75 and 0.85, and for
particles whose energies are 150-keV. Note that the re-
fractive index n(L) increases with decreasing frequency,
w. The maximum number of resonances, n, that can
contribute to the interaction is given considering the
properties of Bessel functions as explained in Appendix
B. For the cases —n < £ < n, the Landau resonance is
located off the equator, and other harmonics occur at
magnetic latitudes A, as defined in (8). We represent
by ,

2 [m, 1 1/2

a=3 [ - )] (49)

which is obtained taking g(u) ~ |cos¢| in (8). Note
that as A7 increases the separation between resonances
Agy1 — Ay~ Ap, decreases. The geomagnetic latitudes
AA (in degrees) extend to the range of the interacting,

13,515

—n < £ < n, harmonics. As w approaches to Q.(L), the
interaction length decreases and resonances occur closer
to each other. The values in Table 2 were obtained by
assuming that the particle energies are ~ 500—keV, and
for the cases —n < £ < n. Here the distance between
resonances is larger than in the case of 150-keV parti-
cles. Thus, for a fixed value of w, the interaction-lengths
increase with the particle’s energy,

Figure 3 shows the change in the normalized action
|AI|, divided by the normalized equatorial energy W,,
versus the harmonic number ¢, for the entire range has-
monics. The wate frequencies at the equator are such
that f71 = 0.75 and 0.5 as indicated in the panels, and
the electric field amplitudes are £ = 104 V/m. The
upper and lower panels correspond to particles whose
energies are ~ 150-, and 500-keV, respectively. The cal-
culations are based on (43), for which we assume that
the wave frequency changes according to the spectrum
in (47). By increasing the electric fields, ¢, the change
in action scales as ¢1/2. For fo1 = 0.75, the frequency
range is Aw/w < 0.55 x 1072, and 0.22 x 10~%, for the
150- and 500-keV particles, respectively. For f71 = 0.5,
then Aw/w < 0.15 x 10~! and 0.6 x 10~ for 150- and
500-keV cases, respectively. Note that a larger num-
ber of harmonics contribute for fo! = 0.5 than for
7 = 075, However, the bandwidth of frequencies
needed to satisfy the second-order resonance condition
is larger, because the separation between resonances is
also larger.

Figure 4 shows the change in energy divided by its
equatorial value, i.e., [AW|/W,, versus harmonic num-
ber £. The physical parameters are as described for Fig-
ure 3, and as indicated in the panels. The calculations
were performed by combining (38) and (43). Thus the
change in energy is proportional to the €!/2. Compar-
ing Figures 3 and 4, we see that AW /W, > |AI|/W,,
thus the change in the particle energies is due to a
change in the parallel component of their velocities.
Also note that the magnitude of |AW|/W,, is approx-
imately the same for f7! = 0.75 and 0.5. However,
since the number of contributing overlapping harmon-
ics increases as f;! decreases, the total gain in energy
is larger for fo°! = 0.5 than for 0.75. _

Figure 5 represents Ay /u < 0 versus £ for the same
cases as in Figures 3 and 4. The results are obtained
from (39) and (43). Here £, which is the closest integer
to uw/Qp(L), is equal to 23 and 15 for £ = 0.75 and

TABLE 1. Physical Parameters for 150 keV Particles

1 cos¢ n(L) Azt n AA
0.50 0.510 112 325 100 2.50°
0.75 0.765 75 398 75 1.75°
0.85 0.867 66 423 60 1.50°

TABLE 2. Physical Parameters for 500-keV Particles

1 cos¢ (L) AD? n AA
0.50 0.540 56 167 100 4.85°
0.75 0.810 37 205 75 3.50°
0.85 0.915 34 222 60 2.80°
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Fig. 3. Absolute value of the change in action divided by the equatorial energy, |AT|/W,, versus the harmonic
number {. The wave frequencies are as indicated in the panels, w = 0.75 and 0.5 x Q,(L). The eclectric feld is
€ = 10~* V/m. The particles energies are for the upper and lower panels ~ 150~ and 500-keV, respectively; their
pitch angles 7.5°. Others physical parameters can be found in Tables 1 and 2.
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Fig. 5. We represent Ax/p £ 0 versus harmonic number £, Here x = sin? ¢ (Q(L)/9Q), 8 is the local pitch angle,
# = sin? (L), and 8(L) is the equatorial pitch angle. The physical parameters are as in Figures 3 and 4.

0.5, respectively. For the negative harmonics AJ < 0
thus AW > 0. If0<e<e, AT < 0 and then AW < 0.
For¢> ¢,, AT > 0 and AW > 0.

8. NUMERICAL APPLICATIONS:
TEE OVERLAPPING CRITERION

Figure 6, represents the number of overlapping reso-
nances, as a function of Ig(£), with £ = (E2+€24£2)1/2
in volts per meter. The wave propagation angles cos ¢
are the constants given in Tables 1 and 2. We assume
a bandwidth in frequencies so that AT is calculated for
each harmonic as in (43). We consider positive £ > 0,
and negative £ < 0, harmonics as indicated in the pan-
els. The upper and lower panels refer to ~ 150- and
500-keV protons; the equatorial wave frequencies are
fo1 = 0.5, 0.75 and 0.85. Overlapping resonances are
calculated as explained in section 5, following the crite-
rion given in (41). The harmonics with the largest pos-
sible |£] overlap first as function of Ig(£). For example,
if 0 < |£] < 70, the number of overlapping harmonics
is equal to 70 — [£|. Resonances overlap if the elec-
tric field amplitudes exceed certain thresholds. Above
these thresholds, the numbers of harmonics contribut-
ing to the interaction reach some limits increasing very
little with £. These limits are established for amplitudes
which are larger than ~ 104 V/m. The electric fields

required for overlapping become smaller as o —, Q.(L).

and as the particle’s energy decreases.

The calculations in Figure 6, assume a wave field of
varying-frequency w(s), and constant values for cos .
They illustrate the importance of having a spectrum

of waves to achieve a more efficient interaction with
the trapped protons. As a matter of comparision, in
a constant frequency wave, the overlapping criterion in
(41) is proportional to e. Thus, the electric fields re-
quire to overlap the resonances In a constant frequency
wave, are larger than 10-2 V/m. On the other hand,
if cos ¢ and w are both functions of s as given in (47)
and (48), the overlapping criterion (41) is satisfied for
all the contributing resonances regardless of the electric
field amplitudes. In what follows we assume that there
exists such spectrum with a bandwidth in frequencies
and propagation angles, thus the resonances overlap and
satisfy second-order resonance conditions.

If the particle motion is essentially a diffusive process
in velocity space, the net fluxes are toward decreasing
values of the distribution function. When the net flux is
towards increasing the particles energies then the waves
damp. Because of the atmospheric loss cone, distribu-
tion functions are anisotropic in pitch angle 6(L), with
a minimum at §(L) — 0. Near the loss cone 3F/56 > 0,
and particles tend to diffuse toward smaller values of 4.
As illustrated in Figure 2, to decrease the pitch angles
Ax < 0, we need: a)for 0 < £ < ¢, AW < 0 and
b)for £ > £, or ¢ < 0, AW > 0. Since the number
of contributing harmonics is larger if AW > 0 than if
AW < 0, there is a net gain of energy for the interacting
protons. Given that £, ~ pw/Qp(L), then £, = 15,23,
and 26 for (L) = 7.5° and for fo' = 0.5,0.75, and
0.85, respectively.

Let us assume there exists a spectrum of waves which
has widths in wave propagation angles A¢ and frequen-
cies Aw, so that all harmonics meet the conditions for
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Fig. 6. Number of overlapping resonances versus Ig(£), where £ is given in volts per meter. We consider positive
£ > 0 and negative £ < 0, harmonics as indicated in the panels. The wave frequencies are w = 0.5,0.75,0.8S Q.(L)
and the wave angles cos® are constants as defined in Tables 1 and 2. The particles energies ~ 150- and 500-keV,

and their pitch angles 7.5°.

second-order resonances and overlap, for all values of £.
Because of this we can combine the contributions of all
the harmonics. Figure 7 shows the logarithm of the net
energy gain in a quarter of a bounce period during the
interaction, 1g(Wg), as a function of Ig(£), where £ is
given in V/m. The total energy gain which is divided by
the equatorial energy W,, is given by considering that
the contributions of the resonances is such the particles
pitch angles are always decreasing, i.e., Ax < 0 for all
values of £. Then

L=—-c0

+o0 Lo
+y —Z} Iﬁﬁ":’_l (50)

=L, {=0

Here AW is defined as in (38), and AT is given by (43).
The upper and lower panels correspond to ~ 150- and
500-keV particles, respectively. We consider the fre-
quencies f! = 0.5 and 0.75, and the initial equatorial
pitch angle of 7.5°. For smaller frequencies the gain
in energy is larger because the number of harmonics is
larger. To obtain these results we have approximated

lg(We) = Cw lg(/E(V/m)) (51)

where £ is given in volts per meter. For 150-keV pro-
tons, Cw ~ 0.85 and 0.75 for f;-! = 0.75 and 0.5, re-
spectively. For 500-keV protons, Cw ~ 0.925 and 0.825
for f7! = 0.75 and 0.5, respectively. The estimates of
Cw are obtained from the results for £ = 107* V/m, in
Figure 4. For example, consider 150-keV protons and

f! = 0.5, if in average we can take AW/W, ~ 0.2 x
10-3 and since |£] < 90, then Wg ~ 0.2 x 103 x 150,
which leads to Cyw ~ 0.75.

Figure 8 represents the logarithm of the net loss in
pitch angle, lg(xp), in a quarter of a bounce period
versus 1g{(£). We represent the same parameters as in
Figure 7. The change in pitch angle is obtained by
adding over all resonances,

<400
Ax
w= 3 £ (52)
{=-00 H

where Ay is obtained by means of (39) and (43), and
p = sin?§(L). Here Ax is < 0 for all values of £, thus
the particles are driven toward the loss cone. Although
smaller frequencies yield a larger change in pitch angles,
the frequency and wave propagation angle spectrum is
also larger when w ~ 0.5Q.(L), than when ~ Q.(L).
As the proton’s energy increases, the changes in pitch
angle become smaller for constant wave amplitudes. In
a single bounce period, 150-keV protons in the pres-
ence of waves amplitudes ~ 10™* V/m, pitch angles
can change by more than one degree. These results are
obtained assuming that

lg(xp) = Cx l8(vE(V/m))

Here for 150-keV protons, Cy ~ 0.65 and 0.45 for f;'! =
0.75 and 0.5, respectively. For 500-keV protons, Cy ~
0.75 and 0.55 for fo! = 0.75 and 0.5, respectively.

(53)
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These estimate are found from the results in Figure 5,
for £ = 10~* V/m, where the combined contribution of
the resonances can be approximated by the areas of two
triangles. Adding these areas and considering (53), we
arrive at the values of Cy.

Figure 9 shows the logarithm of the net loss in action,
lg(Ip), in a quarter of a bounce period versus 1g(€)-
The physical parameters are the same as in Figures 7
and 8. The change in action is obtained by combining
the contribution of all the resonances and considering
that for all £ Ax < 0, then

L oo
)< |al|
Ip = { Z - Z} A (54)
L=—c0 =L,
These results are obtained based on
Ig(Ip) = Cr lg(v/E(V/m)) (55)

For 150-keV protons, Cr ~ 2.05 and 2.15 for fr1=0.75
and 0.5, respectively. For 500-keV protons, Cr ~ 2.1
and 2.25 for f;! = 0.75 and 0.5, respectively.

A final comment on how our results apply to others
L shells, as L decreases from 3.5 to smaller values, say
L = 2, the equatorial gyrofrequency increases as 1/L>,
and the plasma density as 1 /L*. By assuming that the
proton energies remain constant, solving for the reso-
nance condition gives f;'! ~ L*w. Then by decreasing
L, w must also increase as 1 /L®. Thus our results apply
to others L shells within the plasmasphere, by consider-
ing that the wave frequencies must change accordingly
asw ~ 1/

9. SUMMARY AND CONCLUSIONS

We have presented a theoretical study of the proton
whistler interactions near the equator in the Earth’s
magnetic field. Whistler waves propagating near the
quasi-electrostatic limit, can interact with protons of
several hundreds keV energy, travelling in the same di-
rections as the waves along field lines. We assume a
wave packet of a finite bandwidth in frequencies w, and
propagation angle ¢, with respect to the geomagnetic
field. Near the equator w ~ (L) cos ¢. Our investiga-
tion of the Hamiltonian equations, including multiple
harmonics of the proton gyrofrequency for each inde-
pendent resonance, indicate that

1. The contributions of a large number of negative
£ < 0, and positive £ > 0 harmonics as defined by the
resonance condition (6), are relevant. The Landau res-
onance takes place off the equator at the geomagnetic
latitude A = A,. Negative harmonics interactions takes
place near the equator for A < A,. Positive harmonics
cyclotron resonances take place for A > A,.

2. The spacing along magnetic field lines between
cyclotron resonances is small. Within a few degrees of
the magnetic equator the particles may interact with as
many as a hundred harmonics.

3. Protons and waves satisfing the second-order reso-
nance conditions, stay in resonance over relatively long
distances along flux tubes. This is because the inho-
mogeneity of the magnetic field is compensated by the
frequency variation of interactions. The wave-frequency
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period, see (54) and (55), versus 1g(£), where £ is given in volts
per meter. Physical parameters are as in Figure 7.

spectrum needed for second-order resonant interactions

is a function of the distance along the flux tube, and -

the harmonic number.

4. The overlapping criterion for multiple-resonance
crossings is derived. In the fields of multiple waves,
harmonics overlap in phase space and lead to significant
changes in energy and pitch angle.

The numerical calculations applied this theory to pa-
rameters relevant to the plasmasphere and control VLF
experiments. As an example we have studied the L =
3.5 shell, and particles energies of 150- and 500-keV.
The results are as follows:

1. The number of cyclotzon-harmonics resonances in-
creases with decreasing frequency, making the interac-
tions more efficient. On the other hand, the distance be-
tween resonances also increases with decreasing w which
requires a larger bandwidth of waves to overlap those
harmonics. As a consequence this investigation is re-
stricted to 0.5 < w/Q(L) < 1.

2. Interactions are more efficient for the 150-keV pro-

tons than for the 500-keV. Calculations show that for .

electric fields ~ 1074 V/m, a proton’s pitch angle can
decrease one degree or more in a single bounce period.

APPENDIX A: DERIVATION OF EQUATION (8)
Near the equator we may expand 7 as

n=nD)+ (e = 0(E) (50

where (L) denotes equatorial values. We also consider

the following ordering in terms of m./m, <1

(Q° 1)~—Q—”-~1"i (57) .

2.(L) - w mp

Throuhgout the calculations, we keep terms only first
order in m,/m,. We rewrite (6) as

9 _ kY
w w c

1-¢ (58)

After taking the square value of (58), the resonance
condition approximately reduces to
me § v Q
1- 2£ e 27 = 2 2 - 2 - —
me B ot (9 -k ) ©9)

Next we substitute v/c by (7) and 7 by its expansion in
(56), and then show that to first order in m./m,

2_7111 Q.(L)
mp

- (e+v) ~ (1—-(%2(}’—))x

dn Q I3
[2(35:)(14) (S - '1—_—,;]

(60)

Next substitute Q./Qc(L) by the parabolic profile
—_— = = 1
D) 14 3 A (61)

. Combining (60) and (61), and the value of dn/dQ. as

obtained from (2), it can easily be shown that (60) leads
to the result in (8).

ApPENDIX B: TEE INTERACTION LENGTH

We consider the behavior of Bessel functions of large
order and large arguments. For n << and |z| > 1is

2 ® T
Talz) ~ (;;)” ? cos(z— 7~ 37 (62)

where ¢ = k, p, and p is the Larmor radius. For n >
ez/2 then
ez

Tnl@) ~ () (52)

(63)
and then J,, — 0 [Abramowiiz and Stegun, 1964]. The
harmonics that effectively contribute to resonant inter-
actions in (15), depends on the behaviors of Bessel func-
tions. Based on our numerical calculations and the re-
sults in (62) and (63), we approximate the total num-
ber of contributing harmonics n > and < 0, by ~ kpp.
These resonances are located along the field line at lat-
itudes such that A < AA. By substituting into (8),
(£ + v) ~ kop noticing that this is the largest possible
pumber of contributing harmonics we obtain,

AA~2[1n—ek ]1/2 .- 1 iz 64
=3 g 1P (e ‘00545‘) ( )

We call Az the dimensionless interaction léngth, which
is defined as Az = (3/v2) AA.

107




VILLALON AND BURKE: PROTON WHISTLER INTERACTIONS

Acknowledgments. We acknowledge helpful conversations with
J. Albert, R. Helliwell, H. Koons, and J. Kozyra. We thanks
G. Ginet for a careful reading of the manuscript. This work has
been supported by the U.S. Air Force under contract F19628-89-
K-0014 with Northeastern University.

The Editor thanks U. S.Inan, A. Draganov, and H. Karimabadi
for their assistance in evaluating this paper.

REFERENCES

Abramowitz, M., and 1. A. Stegun, Handbook of Mathemati-
cal Functions, Appl. Math. Ser., vol. 55, National Bureau
of Standards, United States Department of Commerce,
Washington, D. C., 1964.

Bell, T. F., The nonlinear gyroresonance interaction be-
tween energetic electrons and coherent VLF waves prop-
agating at an arbitrary angle with respect to the Earth’s
magnetic field. J. Geophys. Res., 89, 905, 1984. .

Bell, T. F., The wave magnetic field amplitude threshold
for nonlinear trapping of energetic gyroresonant and Lan-
dau resonant electrons by nonducted VLF waves in the
magnetosphere, J. Geophys. Res., 91, 4365, 1986.

Bespalov, P. A., and V. Yu. Trakhtengerts, Cyclotron in-
stability of Earth radiation belts, Rev. Plasma Phys., 10,
88, 1980.

Carlson, C. R., R. A. Helliwell, and D. L. Carpenter, Vari-
able frequency VLF signals in the magnetosphere: As-
sociated phenomena and plasma diagnostics, J. Geophys.
Res., 90, 1507, 1985.

Chappell, C. R., K. K. Harris, and G. W. Sharp, A study of
the influence of magnetic activity on the location of the
plasmapause as measured by OGO 5, J. Geophys. Res.,
75, 50, 1970.

Chirikov, B. V., A Universal instability of many-dimensional
oscillator systems,Phys. Rep., 5, 263, 1979.

Dysthe, K. B., Some studies of triggered whistler emissions,
J. Geophys. Res., 76, 6915, 1971.

Dowden, R. L., A. D. McKay, and L. E. S. Amon, Linear
and nonlinear amplification in the magnetosphere during
a 6.6 kHz transmission, J. Geophys. Res., 83, 169, 1978.

Gendrin, R., Gyroresonant wave particle interactions, Sol.
Terr. Phys., part III, Astrophys. Space Sei. Libr., vol 29,
Edited by E. R. Dyer, p. 236, Kluwer Academic, Boston,
Mass. 1972.

Ginet, G. P., and M. Heinemann, Test particle acceleration
by small amplitude clectromagnetic waves in a uniform
magnetic field, Phys. F luids B, 2, 700, 1990.

Helliwell, R. A., A theory of discrete VLF emissions from
the magnetosphere, J. Geophys. Res., 72, 4773, 1967.
Helliwell, R. A., VLF wave stimulation experiments in the
magnetosphere from Siple station, Antarctica, J. Geo-

phys. Res., 26, 551, 1988.

Imhof, W. L., H. D. Voss, J. B. Reagan, D. W. Datlowe,
E. E. Gaines, J. Mobilia, and D. S. Evans, Relativistic
electron and energetic ion precipitations spikes near the
plasmapause, J. Geophys. Res., 91, 3077, 1986.

Inan, U. S., Gyroresonant pitch angle scattering by coher-
ent and incoherent whistler mode waves in the magneto-
sphere, J. Geophys. Res., 92, 127, 1987.

Kennel, C. F., and H. E. Petschek, Limit on stably trapped
particle fluxes, J. Geophys. Res., 71, 1, 1966.

Koons, H. C., Proton precipitation by a whistler-mode wave
from a VLF Transmitter, Geophys. Res. Lett., 2, 281,
1975.

13,521

Koons, H. C., Stimulation of Pc 1 micropulsations by con-
trolled VLF transmissions, J. Geophys. Res., 82, 1163,
1977.

Kovraghkin, R. A., M. M. Mogilevskii, Zh. M. Boske, Yu.
1. Gal’perin, N. V. Dzhordzhio, Yu. V. Lisakov, O. A.
Molchanov, and A. Rem, JETP Lett., Engl. Transl., 38,
397, 1983.

Kovrazhlkin, R. A., M. M. Mogilevskii, O. A. Molchanov,
Yu. I Gal’perin, N. V. Dzhordzhio, Zh. M. Boske, and
A. Rem, Precipitation of protons from the Earth’s magne-
tosphere stimulated by artificial low-frequency radiation,
JETP Lett., Engl. Transl., 39, 228, 1984.

Lyons, L. R., and D. J. Williams, Quantitative aspects of
magnetospheric physics, D. Reidel, Hingham, Mass., 1984.

Matsumoto, H., Nonlinear whistler-mode interaction and
triggered emissions in the magnetosphere: A review, in
Wave Instabilities in Space Plasma, edited by P. J. Pal-
madesso and K. Papadopoules, pp. 163-190, D. Reidel,
Dordrecht-Holland, 1979.

Menyuk, C. R., A. T. Dobrok, K. Papadopoulus, and H.
Karimabadi, Stochastic electron acceleration in obliquely
propagating electromagnetic waves, Phys. Rev. Lett., 58,
2071, 1987.

Morgan, M. G., Some features of pararesonance (PR) whist-
lers, J. Geophys. Res., 85, 130, 1980.

Nunn, D., A self-consistent theory of triggered VLF emis-
sions, Planet. Space Sci., 22, 349, 1973.

Sazhin, S. S., Quasielectrostatic wave propagation in a hot
anisotropic plasma, Planet. Space Sci., 34, 497, 1986.
Schulz, M., and G.T. Davidson, Limiting energy spectrum
of a saturated Radiation Belt, J. Geophys. Res., 93, 59,

1988.

Shklyar, D. R., Mechanism for proton precipitation trig-

ered by a VLF wave injected into the magnetosphere,

JETP Lett., Engl. Transl., 41, 448, 1985.

Shklyar, D. R., Particle interaction with an electrostatic
VLF wave in the magnetosphere with an application to
proton precipitation, Planet. Space Sci., 34, 1091, 1986.

Sudan, R. N., and E. Ott, Theory of triggered VLF emis-
sions, J. Geophys. Res., 76, 4463, 1971. -

Villalén, E., and W. J. Burke, Relativistic particle accel-
eration by obliquely propagating electromagnetic fields,
Phys. Fluids, 30, 3695, 1987.

Villalén, E., W. J. Burke, P. L. Rothwell, and M. B. Sile-
vitch, Quasilinear wave particle interactions in the Earth’s
radiation belts, J. Geophys. Res., 94, 15243, 1989.

Villalén, E., and W. J. Burke, Near-equatorial pitch angle
diffusion of energetic electfbns by oblique whistler waves,
J. Geophys. Res., 96, 9655, 1991.

Walker, G. H., and J. Ford, Amplitude instability and er-
godic behavior for conservative nonlinear oscillaltor sys-
tems, Phys. Rev., 188, 416, 1969.

W. J. Burke, Geophysics Directorate, PL/GPSG, Hanscom Air
Force Base, MA 01731.

E. Villalén, Center for Electromagnetics Research, Northeast-
ern University, Boston, MA 02115.

(Received November 2, 1992;
revised February 3, 1993;
accepted March 4, 1993.)

108



JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. All, PAGES 21,329-21,340, NOVEMBER 1, 1994

The U.S. Government is authorized to reproduce and sell this report.
Permission for further reproduction by others must be obtained from
the copyright owner.

Diffusion of radiation belt protons by whistler waves
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Abstract. Whistler waves propagating near the quasi-electrostatic limit can inter-
act with energetic protons (~80 - 500 keV) that are transported into the radiation
belts. The waves may be launched from either the ground or generated in the
magnetosphere as a result of the resonant interactions with trapped electrons. The
wave frequencies are significant fractions of the equatorial electron gyrofrequency,
and they propagate obliquely to the geomagnetic field. A finite spectrum of waves
compensates for the inhomogeneity of the geomagnetic field allowing the protons
to stay in gyroresonance with the waves over long distances along magnetic field
lines. The Fokker-Planck equation is integrated along the flux tube considering the
contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients
in energy, cross energy/ pitch angle, and pitch angle are obtained for second-order
resonant interactions. They are shown to be proportional to the electric fields
amplitudes. Numerical calculations for the second-order interactions show that
diffusion dominates near the edge of the loss cone. For small pitch angles the largest
diffusion coefficient is in energy, although the cross energy/ pitch angle term is also
important. This may explain the induced proton precipitation observed in active

space experiments.

1. Introduction

Proton precipitation during controlled VLF transmis-
sion experiments occurs over a wide range of plasmas-
pheric L shells. Whistler waves transmitted from the
ground propagate along the field lines to the magnetic
equator where they become quasi-electrostatic [Koons,
1975, 1977; Kovrazhkin et al., 1983, 1984], and inter-
act with the protons in the energy range {~80 - 500
keV). Furthermore, Bell and Ngo {1988] have shown

that VLF electromagnetic waves commonly excite high-

amplitude electrostatic waves with the same frequencies
but with much shorter wavelengths and that have the
characteristics necessary to interact with the energetic
protons. Lightning discharges [Burgess and Inan, 1990]
also generate VLF waves that, after entering the magne-
tosphere, can become trapped bouncing back and forth
between hemispheres. Some of these waves can also in-
teract with energetic protons.

The waves considered here are such that the ratios of
the wave frequencies to the equatorial electron gyrofre-
quencies are 0.5 < w/Q(L) < 1. The argument L ref-
erences the electron cyclotron frequency 2. to its equa-
torial values. The wave vectors k, form an angle ¢ with
the background geomagnetic field B,, which is assumed

Copyright 1994 by the American Geophysical Union.
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to be along the z direction. See Figure 1 for a represen-
tation of the geometry of the problem. Thus for most of
their trajectories along the field lines w <« €., ¢ < 30°.
Near the equator the waves propagate obliquely to the
geomagnetic field with 0° < ¢ < 60°.

The frequency range (0.5fce < f < fee) for the
waves we propose to investigate has been observed in
a number of experiments [Dowden et al., 1978; Koons,
1977; Kovrazhkin et al., 1984). For purposes of illustra-
tion Plate 1 shows a color wave spectrogram frequency-
versus-time, taken using the electric field sweep fre-
quency receiver on the CRRES satellite during the out-
bound portion of orbit 216 [Gussenhoven et al., 1985].
The color scale represents wave intensities in V2/m?
Hz. The white line indicates the electron gyrofrequency.
The upper hybrid resonance is above the electron gy-
rofrequency and has a sharp drop near L = 4, mark-
ing the location of the plasmapause. Note that in-
side the plasmapause strong emissions were detected in
the range 0.5f.. < f < 0.75fce. The right-hand side
of Plate 1 shows the wave-amplitude versus frequency
spectrum compiled at 1445:02 UT when CRRES was
crossing the magnetic equator, just inside the plasma-
pause. The wave amplitudes at these frequencies range
between 1075 and 10™* V/m. The bandwidths Aw over
which the wave amplitudes were measured are in the
range 6.5 Hz < Aw < 3.2 kHz. In all cases Aw/w < 1;
for f ~ 0.5f.. the bandwith is Aw = 400 Hz.

For quasi-electrostatic waves the propagation angle
¢ is near the resonance cone angle cos¢ ~ w/Q.(L).
Owing to the reduced phase and group velocities of
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Figure 1. Schematic representation of whistler (w, k), in-
teracting with electrons and protons near the equator. The
Earth’s dipole magnetic field is Bo, the geomagnetic lati-
tude is A, and s is the coordinate along the flux tube. The
coordinate system used in this paper is depicted here.

the waves, resonant interactions occur with slower pro-
tons. For proton-whistler interactions the particles’ par-
allel velocities v and the wave phase velocities are in
the same direction. The characteristic feature of the
proton-whistler interactions is the crossing of multiple
harmonics of the proton gyrofrequency [Shklyar, 1985,
1986]. Because the waves frequencies are near the equa-
torial electron gyrofrequency, the resonances are spaced
very close to one another, and proton-whistler interac-
tions occur within a few degrees latitude of the magnetic
equator.

Interactions in the magnetosphere between the trans-
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mitted signals and energetic electrons can lead to the
amplification of the original waves [Kennel and Petschek,
1966; Bespalov and Trakhtengerts, 1980] and to fre-
quency spreading [Nunn, 1974; Carlson et al., 1990].
Nonlinear amplification of waves occurs as a result of
coherent cyclotron interactions between the VLF waves
and resonant electrons. Note that for electron-whistler
interactions the parallel velocities v of the electrons
and the wave phase velocities are oppositely directed.
The first harmonic and the Landau resonance play the
most important role in the interactions. Triggered emis-
sions sometimes have amplitudes which are larger than
the initially transmitted wave [Helliwell, 1967]. They
also have narrow bandwidths in frequency and prop-
agation angle that are closely limited to those of the
transmitted waves. Having a finite bandwidth of waves
is a key element to enhance the efficiency of proton-
whistler interactions. Since resonant interactions with
energetic electrons are important sources of wave en-
ergy, the proton-whistler interaction is a complicated
process, involving more than one plasma species.
Finite wave bandwidths allow protons and whistlers
to satisfy the conditions for second-order resonances
[Dysthe, 1971; Brinca, 1981; Carlson et al., 1985], where
inhomogeneities of the magnetic field are compensated
by frequency variations. The relative phase between
the proton and the wave is & as defined below in (13).
For resonant particles the spatial derivative of the phase
along the field line is such d&;/ds = 0. In addition, for
second order resonances d2£;/ds? = 0. Thus the waves
and particles may remain in resonance for relatively
long distances along the magnetic field lines. The reso-
nant wave frequency varies as a function of the distance
along the field line, compensating for the variation of
the geomagnetic field. In a previous work [Villalén and
Burke, 1993], we showed that second-order interactions
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Plate 1. A frequency-versus-time spectrogram obtained by the sweep frequency analyzer on the CRRES
satellite. Frequency is given in kilohertz. The color scales are logio spectral density in V?/ m? Hz. The
right-hand side gives the wave electric field amplitudes in volts per meter, as function of the wave
frequency in kilohertz measured at 1445 UT near the the magnetic equator.
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resembles those in a homogeneous plasma. Because the
resonances can easily overlap in phase space, they lead
to significant changes in both the particle energies and
pitch angles.

This article extends previous work using a Hamil-
tonian formulation {Villalén and Burke, 1993] of test-
particle interactions with the whistlers which, near the
magnetospheric equatorial plane, appear Doppler shifted
to some harmonic of the proton gyrofrequency. The af-
fected protons gain energy from the waves and decrease
their pitch angles while crossing many resonances. Here
we evaluate the diffusion coeflicients, for second-order
resonant interactions between protons and whistlers
based on this Hamiltonian formulation. The diffusion
coefficients are shown to be linearly proportional to the
waves’ electric field amplitudes. These are then used to
investigate the behavior of quasilinear, bounce-averaged
diffusion equations. Because the number of energetic
protons is small, waves gain more energy interacting
with the electrons than they lose interacting with the
protons. Thus we do not solve the self-consistent prob-
lem for the protons, but assume that wave amplitudes
remain relatively unchanged during the interactions.

The Fokker-Planck equation has also been investi-
gated by [Kozyra et al., 1994] for the interaction of ring
current protons with plasmaspheric hiss. The waves
frequencies considered in their article are much smaller
than the equatorial electron gyrofrequency. In this case
the Doppler shifted harmonic resonances extend for long
distances along the flux tube. They only considered
first-order resonances. Thus their diffusion coefficients
are proportional to the square of the waves’ electric field
amplitudes. They found that energy diffusion was very
important near the edge of the loss cone. Pitch angle
diffusion was significant only at large pitch angles, and
almost negligible near the loss cone.

The paper is organized as follows. Section 2 describes
the resonance condition between the waves and protons
at multiple harmonic resonances, for waves propagating
in a cold plasma. Section 3 determines the length of
the interaction region along the flux tube and the num-
ber of possible interacting harmonics as function of the
wave-frequency bandwidth. Section 4 briefly reviews
the Hamiltonian equations of motion derived by Vil-
lalén and Burke [1993]. Section 5 presents the Fokker-
Planck equation as function of the equatorial pitch angle
and proton energy. In section 6 we integrate the quasi-
linear diffusion equation along the flux tube by con-
sidering the contribution of multiple resonances cross-
ing, for a finite bandwith of waves. Section 7 considers
the case of a weakly inhomogeneous plasma, for second-
order resonant interactions, where the inhomogeneity of
the magnetic field is compensated by frequency varia-
tions. For second-order resonances the energy diffusion
equation is studied near the loss cone in Appendix B.
Section 8 studies first-order resonant interactions for a
strongly inhomogeneous plasma. A comparision of first-
order and second-order interactions is given.

Numerical applications are presented in sections 9
for second-order interactions along the magnetic shells
L = 35 and 2. For the L = 3.5 shell the diffusion
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coefficients are large near the loss cone and almost neg-
ligible for large pitch angles. For small bandwidths
(Aw/w ~ 0.005 — 0.01), only protons with energies of
~ 100 keV and pitch angles near the loss cone undergo
significant diffusion. Thus one should expect first-order
resonant interactions to bring the protons closer to the
loss cone. In our theory the scattering of the protons
into the loss cone results from second-order interactions.
The dominant diffusion coefficient is in energy, though
the contribution of the cross energy/ pitch angle coef-
ficient is also significant near the edge of the loss cone.
We show that diffusion is more effective near L = 2
than near the L = 3.5 shell. In addition, the diffusion
coefficients may also become large for large pitch angles.
The summary and conclusions are given in section 10.

2. Resonant Proton-Whistler
Interactions

Consider a whistler wave of frequency w and wave
vector k, propagating in a field aligned duct. The geo-
magnetic field Bo is along the z direction and ¢ is the
angle between k and Bo (see Figure 1). The refractive
index n = ck/w satisfies the dispersion relation

(wP/w)z (1)
(Qe/w)|cos @] — 1
where w, and Q. are the electron plasma and gyrofre-

quencies, respectively. The angle ¢ is such that cos ¢ <
cos ¢ < 1. The resonance cone angle ¢, is defined as

7’ =1+

w
w05 dr = 7 @
where (L) denotes the equatorial value of the electron
gyrofrequency.

The electric field is E = X &, cos¥ — § & sin¥ —
2&3 cos ¥, where %, ¥ and Z are unit vectors; ¥ =k z+
ky z —wt, and ky,k, are the components along and
perpendicular to Bo of the wave vector. The ratios of
the electric field components are

& _ 1 (wp/w)?
& 1 (Qe/w)—|cosgl
(3)
& 1 — (wp/w)? — (7 sin $)?
& = n? sin¢ cos¢

For the case of waves propagating near the resonance
cone, w ~ Qe(L)| cos ¢|, the equatorial refractive index
n?(L) > 1. The wave electric field which is linearly
polarized, has components £/&; < 1, and &£1/& ~
—sing/cos¢. In this case the wave becomes quasi-
electrostatic since E is almost in the direction of k, and
the group velocities vy ~ 1/7 are very small.

Near the equator, we approximate the Earth’s mag-
netic field by a parabolic profile

LSy
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where s ~ RgLA, Rg is the Earth’s radius, L is the
magnetic shell parameter, A is the geomagnetic lati-
tude, and vz, = (V2/3)RgL. The equatorial gyrofre-
quency is denoted by (L), and Q stands for the gy-
rofrequencies either for electrons or protons at a lo-
cation s away from the equator along the field line.
Equation (4) is obtained from a Taylor expansion of
the dipole field and is an excellent representation of the
magnetic geometry within £20° of the equator.
Whistler-proton interactions satisfy the resonance con-

dition
w — k”'u“ - er =0 (5)

where, £ = 0,%+1,%2, ..., is the harmonic number; Q,
is the proton gyrofrequency; and v; is the parallel
components of the particle’s velocity. We call p =
sin? @, where 6, is the equatorial pitch angle. Here
01, > 0., where 6. is the pitch angle at the edge of
the loss cone, and py. is the corresponding value of
p. As a function of the L shell, the mirror ratio is

= p;! = L3 (4 — 3/L)Y/2. To zero order in the
electric field amplitudes, the particle’s magnetic mo-
ment is conserved. Then we may write for the parallel
and perpendicular components of the particle velocity
v v = o[l — pQ/QL)Y?, vy = v[uQ/Q(L)]Y2. Note
that as the particles and waves move away from the
equator, the parallel velocities v of particles decrease,
while the waves’ phase velocities w/k) increase.

Protons of energies less than a few hundred keV, sat-
isfy the resonance condition with waves whose refractive
indices 7 are very large. As the proton energy decreases
and the pitch angle increases, 7 increases. If n becomes
very large the dispersion relation in (1) is no longer
valid. In this case we miust consider thermal corrections
for the plasmaspheric electron population that supports
the waves as described by Sazhin [1993]. These thermal
corrections limit the magnitudes of 7y = 7 w/Q(L),
to finite values. This means that as vy — 0, resonant
interactions described by (5) may not be possible. As
the particles energies decreases, the resonant pitch an-
gles must be closer to the loss cone. Interactions for
larger pitch angles required larger energies. Thus there
could exist a lower value in particle energy, and an up-
per value in the pitch angle needed to satisfy (5). These
values depend on the thermal corrections that defined
the possible upper limits of the refractive indices.

3. Interaction Region

We assume that a proton interacts at the equator
with the harmonic £ = —v, where v > 0. The geomag-
netic latitude A, of higher-order resonances has been
obtained by [Villalén and Burke, 1993] and turn outs
to be

4 m 1
2_~ "¢
Az = (+v) | cos ¢

9 m,
where v < k1 p, and p = v, /9, is the Larmor radius.
For reasons explained below the resonant harmonics
that effectively contribute to the proton-whistler inter-
actions are such that —k; p < £ < kj p, where k p > 1.

P jcosgl 1) (8)
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We consider a spectrum of waves that is centered
at a certain value of w, and propagates near the res-
onance cone angle in (2). The widths of this spectrum
are Aw(<K w), and A¢(<K ¢,). The interaction regions
AQ., where 0 < Q. — Q(L) < AQ,, are functions of
the waves’ frequency bandwidths. The geomagnetic lat-
itudes for resonant interactions, A, extend over 0 < A <
AA. From (4) we get that (AA)2 (2/9) AQ./Q.(L).
Refering to (46) of [ Villalén and Burke, 1993, in terms
of the waves’ frequency bandwidths we show

1 dy ™
"7” ’U“ dQ

)2 P 2 % d77|l [dT]” (7)

dQ.

where 7 = 7 cos¢ and depends on w and ¢ through
the variable wy = w/ cos ¢. Here dny /dQ, dny/dw, are
obtained from (1), and dv/dSle = —v2 /[2Q.(L) ).

The number of possible interacting harmonics cov-
ered by this spectrum is n, where —n < ¢ < n, is ap-
proximated as

_ my cos ¢ 2

"= e D) Jeosg =1 BT @

Combining (7) and (8), we find the number of contribut-

ing resonant harmonics n as function of the width of the
spectrum Aw/w.

The interaction region along the field line has a max-
imum extent in geomagnetic latitude ~ AAj, that is,
AAy > AA, for any value of Aw/w. It is obtained by
substituting (¢ + v) by ~ 2k, p in (6), which leads to

Qe(L) 1
~ Teos ¢l) 9

Note that AA increases with the particle energy and
with the pitch angle. By substituting in (7) AA by
AA L, and solving for the bandwiths yields (Aw/w)y.

(AAL )2 8me

kip(

mp w

3AAL 9 w

7 > [1+tan6, (1 - __cos¢Qe(L))

(10)

If the widths of the spectrum are equal or larger than
(Aw/w)r, the entire range of possible resonant harmon-
ics is included in the interactions.

For equatorial interactions that occur near the loss
cone, resonant particles must have energies in the range:
0 < v? < v%,. For a finite width spectrum such that

(—)L = |

¢r>¢ > br — Ag, we show
1/2
Uy o= 9—6@ tan ¢, sin A¢ —-—G—J (11)
Wy o—1

4. Equations of Motion

In this section we briefly summarize the Hamiltonian
formulation presented by [Villalén and Burke, 1993,
to provide the main equations that are relevant to the
theory developed here. We normalize the proton v and
canonical V' velocities, by ¢!, length s by rL , call

T = tQ,(L), and define k = QP(L) ri/c ~ 1. The
dimensionless electric field amplitudes are

o q&;

P ompew (12)
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for i = 1,2,3, and where g is the proton charge. The
relative wave-proton phase angle is

® / / w

& fA+/(; ds' rr, k”(s ) QP(L) T (13)
where, in terms of the canonical velocities in the y
and z directions, A = arctan(V,/Vz). To zero order
in the electric fields amplitudes, A = t Q,(L). The
canonical action-angle variables are I and A, where
I=(V3%/2) Q(L)/Q

To first order in the electric field amplitudes €;, the
normalized, time-dependent Hamiltonian is a function
of the canonical pairs of variables, (V}, s), and (I, A),

V2 o

H= I-——-——V” Z Sin&Tg

2 Q(L) (14)

£=—co

Here

T = VL [(51—52)\7&1(-’5)+(51+52)‘7‘"(x)]

— €3 Jg(z) (15)

where J; are Bessel functions, whose argument is z =
ki p, and p = V, /2. The behavior of Bessel func-
tions for large arguments is such that if £ < k) p, then
[Abramowitz and Stegun, 1964]
2 1
Tez) = (V2 eos(z = sbr—3m)  (16)

if £ > k, p then the contribution of the Bessel functions
are negligible. In the numerical calculations we find
that near the loss cone, where v_is small, the argument
of the Bessel functions is large. Equation (16) may still
be used near the loss cone provided the harmonic ¢ is
smaller than the argument of the Bessel function.

For a particle crossing an isolated cyclotron resonance
we need only consider a single term £ in the summation
in (14). In this case we find that

dI
== £ cos& Yy @17
For the phase angle we find
% (ky i)
a3 = a+ cosée — T (18)

The inhomogeneity factor a depends on the variation
of the geomagnetic field, and the frequency spectrum,
we show

I N0 [ﬂ ® e ~m® m]
1 d0 w d’r]" dw
QD) ds T D) dwe = (19)

where wy = w/cos¢, n = 7 cos¢, and for resonant
protons d€/ds = 0. By using the resonance condition
(¢= ) we estimate that

{ 1 ]2 P(L) il
QL) ds w 1-—p

|cos ]
" Toos gl - w/ne@)]
(20)
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The change in particle kinetic energy W is

dw w dI

ds ~ e,() ds ey

We define x = Q(L)/S sin? 8, where 6 is the local pitch
angle. The evolution of x as a function of s is

dx 1 . w ﬂ
5. Diffusion Equation

Consider the diffusion equation [Lyons and Williams,
1984]:

of L uwof_
or k 0s p(L

Y [ér

. [é+;}: (1—-n cosqS'u”)]

o 21r)3

2, v\ A
.6(7]“ v||+€—;——1)< W-JJ—_Te) Gf (23)

where the operators:

A UL) vi [, _ (VLly2 4 vy i
¢ = Q 2 [ﬂ w ( v ) Ou + Ov
(24)
R 1 9
G + ——(1—’)7” vy) = 2Z 5o v? sind
UL v O 8 Wiyo| VL
+ 0 v ou ¢ w ) v )

p = sin? @y, 0, is the equatorial pitch angle, and » is
the normalized proton velocity.

We can further rewrite the diffusion equation as

6f vy 8f _ 3 &
67' k Os e_z_:oo / @z Se (25)
where
_woff, &6 1, 9
Se = v a#{ [dﬁ.v Sv + v du'l-‘ a#:l} f
1 9 7]
+ F%{U[’vd” 30 +d“,a]}f(26)

The diffusion coefficients are defined in terms of

Ae = (27

oy oo G T8 85D

where v, = v) /&, and T is given in (15). Here dés/ds =
kyre + (€Qp — w)/vp(L); and for resonant protons,
df;/ds = 0. Because of the behavior of Bessel functions
for large arguments, the number of harmonics that give
nonzero contribution to-the summation in (25), is such
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that €] is smaller than or of the order of kjp. For
|| > ki p the Bessel functions contribution to Y, are
negligible. We show

v

dv,'u = ( _L)Q AZ

v

(L)
du,u = 'U|| du.,'u = 2/42?2?[/—) [E :p h 1] Ag
(28)

Q Q,(L) 1
d = 4 3 P _ 2 -
L Q(L)‘u [e W 1] vy AZ

6. Integrated Diffusion Equation

To include the effects of the atmospheric loss cone, we
introduce the term f/7,¢m. Here maim = 75/2, if 0, is
within the loss cone and 7., = o0, if €, is outside the
loss cone. The proton bounce period 75 is the time for
a particle to travel from one mirror point to the other
and back again. Next integrate along the flux tube by
applying the operator: fj;o ds/(7gv,) to both sides of
(25), which becomes

af f/ d/2‘¢d¢17(29)
’I'atm f=—00 men /2 s U—2 ¢
where
0 0 0
'Tg = a {UDp,v%+’Du,y —(‘ﬁ:l f+
0

0 o)
2 Yo v
50 ['U Dy 50 +vD,, B,u} S (30)

The diffusion coeflicients are obtained after integrating
along the field lines as follows:

w 1 T2
D'U‘U 2 £
: om ™ T vieeEy Y
D‘U,;J. = Du’v = 2# [_ZM — 1] D'u,'u (32)
wp
(L)
D,, = 4u[e—22 _1)?
787 w | w e 1 D (33)

where T, must be evaluated at the resonance and 7gv ~
62k x 1.3802 is independent of v.

By assuming we have a narrow spectrum of waves we
approximate the integrals in (29) as

o) 9 7/2
S
0 —7/2

d
~ 7n(L)? (?i;l)(“ Aw Acos¢

B = sin ¢ do

(34)

where Aw and Acos¢ are the frequency and angu-
lar widths of the wave spectrum, such that Aw/w and
Acos¢/cos¢, < 1. Thus the integrand is evaluated
for n ~n(L) and cos ¢ ~ w/Q(L).
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We define the diffusion functions

53 D

W, v) =
b=—-n
“+n
Nv) = 83 D (35)
{=—n
+n
Plp,v) = ﬁz (2
=—n

The summation extends to all the resonant harmonics.
If the interaction region AA is such that extends to the
entire range of resonant harmonics, that is, AA — AAL,
then we may take n — oc.

Next take f = F(7,) G(v,u), where 7, = 7 v is
independent of v and . We define
. 1 dF

»=-lz g;:] (36)

and Tatm = Tatm v, Which is independent of v. After

substituting in (29) and (30), we show that m terms of
the proton velocity and pitch angle (u = sin®6y), the
diffusion equation becomes

1 1 1 0 0 3]
[_}_;‘ + Tatm]’UG = ﬁﬁ [’UN‘é’I; + PE} G
18, 8 5

7. Weakly Inhomogencous Case

For sufficiently large waves amplitudes and for a wave
spectrum such that we can neglect the contribution of
« in the right-hand side of (18), the inhomogeneity of
the magnetic field is compensated by the wave spectrum
and the solutions of the equations of motion resemble
that of a homogeneous plasma. From (18) and (31)
we find that the energy diffusion coefficient for second-
order resonant protons, is

1
1 ﬁTe

8(n cos¢)? v v (38)

Dv,v =

The other coeflicients are given in terms of D, , by
means of (32) and (33). Recall that Y,, which is a func-
tion of u, is defined in (15). We can also derived the
diffusion coefficients by using the equations of motion
in section 4 (see Appendix A for details).

We consider the following properties of Bessel func-
tions:

+ oo

Z & Jo(z) =

f=—cc

S Jenra) = (@ F 1)

£=—c0

(39)

where v = 0,1, 2. For interactions that occur near the
loss cone, the argument of the Bessel functions is ap-
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proximately obtained by using the resonance condition
in (5) as

tan 6y tano, > 1 (40)

ek W w
= .L — N —
Qp QL)
where ¢, is defined in (2).
The diffusion functions W, A, and P, are given by
(35). If the interaction region AQ, extends to the entire
spectrum of resonant harmonics, we may take n — oo.
In this case we can add over all the harmonics, by con-
sidering that (Q,(L)/w p) < 1 and (40), we obtain

B

W) = T T [e1 sinf, — €3 cosOy]
N@OL) = 2W(8L) [tanby tang, — sin®01] (41)
POL) = 4W(0.) [tanf tang, — sin? 4,

where 3 is defined in (34). For large pitch angles
cos@;, — 0, and pitch angle diffusion dominates over
energy diffusion. We define ¢ = p!/2 =sin 6y, for small
pitch angles near the loss cone, { <1 and W(0.,) ~ We.

We show
1 QL) Awl]? w 1°
We 4 cosdy wp T} ["(L) Qe(L)]
1 1
s ()% e1 — =
(42)
N@OL) ~ nl+n(?
= 2W,[tan¢, sinfL — sin? 0r]
POL) ~ p+p(®

= 4 W, tan¢, sin’ 6 [tan¢g, — 2sind.]

thus energy diffusion dominates over pitch angle diffu-
sion.

8. Strongly Inhomogeneous Case

If the inhomogeneity of the magnetic field and the
wave spectrum are such that we can approximate in
(18), d?€,/ds? ~ «, and if the waves are near the quasi-
electrostatic limit then

1/2 M
+
] {1—u

The energy diffusion coefficient becomes

v [T (1~ p)] (44)

| cos ¢|

1/2
{cos | — w/Qe(L)}
(43)

K W

SR

o~ ——
Y

w32 _F “p

[2 Q,(L) 2nrgy Qe(L)

D’u,v =

The other coefficients are readily obtained combining
(44), (32), and (33). By comparing (38) and (44) we see
that for second-order resonant interaction the diffusion
coefficient is ~ &, the amplitudes of the electric fields.
For first-order interactions ~ €2 and thus the diffusion
coefficients for first-order interactions are much smaller
than for second-order interactions.
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9. Numerical Applications

9.1. Frequency Bandwidths

We have carried out some numerical calculations based
on the model presented in the previous sections for the
magnetic shells L = 3.5 and L = 2. The plasma density
in cm™3 is approximated at the equator as [Chappell
et al., 1970): n. = 3 x 10° (2/L)*. Recall that the
dipole magnetic field at the equator is B(L) = Bo/L3,
where B, = 0.311 G. For the L = 3.5 shell the equato-
rial electron gyrofrequency is Q¢(L) = 1.28 x 10% rad/s;
the ratio between the electron plasma frequency and
the equatorial cyclotron frequency is wp/Qe(L) = 7.9;
and the width of the equatorial loss cone is 0. = 6.5°.
For the L = 2 shell we find Q.(L) = 6.8 x 10° rad/s;
wp/Qe(L) = 4.5; and 0, ~ 16°. Calculations were con-
ducted for the three frequencies w/Q(L) = 0.5,0.75,
and 0.9, and for pitch angles at the loss cones and 20°
from the loss cones. That is, for 8, = 6.5° and 20° at
L = 3.5, and for 8, = 16.3° and 35° at L = 2.

For the Landau resonance ¢ = 0 the refractive index
n = ck/w as obtained from the resonance condition in
(5), is a function of w/Q(L), the particle energy, and
the pitch angle. Figure 2 shows (L) as a function of the
proton energy in keV for the shells L = 3.5, and 2. The
three different values of w are indicated by the curves.
The pitch angles are also indicated in the figure. Note
that as 0, increases so does the refractive index. For a
given energy > 50 keV, as 8, — 90°, n — oo. As the
refractive index gets very large thermal corrections to
(1) due to the plasmaspheric electron population that
supports the waves become necessary. This will give the
upper limits for the values of . Thus interactions at
large pitch angles may not satisfy the resonance condi-
tion in (5), and consequently may not be possible. Note
that refractive indices that satisfy the resonance condi-
tion in (5) are similar in magnitudes for L = 3.5 and 2.

L =35

250 o 250

150 150

50 50
<)
f=3

250 250

150 150

50 50 K

1 1 ) 1 1 H 1 H
100 300 500 100 300 500
Energy (keV)

Figure 2. Equatorial refractive index, n(L), versus the pro-
ton energy in keV, for the magnetic shells L = 3.5 and 2.
The wave frequencies are w/§%(L) = 0.5,0.75, and 0.9. The
pitch angles are as indicated in the panels.
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This is because, though w, /(L) decreases with L, the
waves angles ¢ come closer to the resonant cone angle ¢,
as L decreases, thus n(L) remains almost constant with
L, for given values of w/§(L) and the proton energy.

Combining (5) and (1), we can show that in terms of
the normalized particle velocity, the wave normal angle
is

“p

¢ = AL {[” o)

Thus as wp/Qe(L) and cosf decrease with L, cos¢
becomes closer to cos ¢, = w/Q(L). Figure 3 plots
cos ¢ versus the proton energy in keV, for the shells
L = 2 (solid line), and L = 3.5 (dashed line), and for the
three frequencies. At the edge of the loss cones the pitch
angles are §;, = 16.3° (solid line), and f = 6.5° (dashed
line). We see that for L = 2, cos¢ must stay closer
to w/Q(L) than for L = 3.5, to satisfy the resonance
condition in (5).

Figure 4 shows k_ p as function of the energy (keV),
for L = 3.5 (left panels) and L = 2 (right panels). The
frequencies and physical parameters are the same as in
Figure 3. The pitch angles are as indicated in the fig-
ure. As we can see, k p increases with 8;, and thus, so
does the number of contributing harmonics which are
proportional to ki p. Since the loss cone is wider for
L = 2 than for L = 3.5, we find that the arguments of
the Bessel functions, k, p, are larger near the loss cone
at L = 2 than at L = 3.5, due to the increasing val-
ues of sinf. Thus the numbers of resonant harmonics
that contribute to the interactions near the loss cone are
larger for the L = 2 than for the L = 3.5 shells. How-
ever these harmonics are closer to each other at L = 2
because ¢ is closer to ¢,. The extent in geomagnetic
latitude remains small at L = 2 even for large pitch
angles.

In Figure 5 we show AAL (in degrees) as given in (9)
versus the proton energy (in keV), for L = 3.5 and 2,
and for the same frequencies and physical parameter as
in Figures 4 and 6. The interaction region along the
flux tube extends to 0 < Qe — Q(L) < AQ,, where
AQe /(L) = 4.5(AAL)%. Thus the interaction region
increases with increasing pitch angle, and with the pro-
ton energy. It also increases with decreasing w. The ex-

cosf.)? + 1} (45)

09 |me=m===—=z-7°77
o 0.75 |smm====o==oTTTTTT
b4 _—
-3
Q
0.5 R Tt
100 300 500
Energy (keV)

Figure 3. Wave normal angle cos ¢, versus proton energy
in keV, for L = 2 (solid line) and for L = 3.5 {(dashed line).
The frequencies are w/Q(L) = 0.5,0.75, and 0.9. The pitch
angles are 8 = 16° and 61 = 6.5° which correspond to the
edge of the loss cones.
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Figure 4. Argument of Bessel functions k. p, versus the
proton energy in keV, for L = 3.5 and 2. The frequencies
and pitch angles are as in Figure 4.

tent of resonant interactions remains smaller for L = 2
than for L = 3.5 because the proximity of the harmonics
decreases with L.

Figure 6 represents (Aw/w)y versus the proton en-
ergy as given in (10), for the same parameters as in
Figure 6. We see that near the loss cone the wave fre-
quency bandwidths are smaller than for larger pitch an-
gles. The bandwidths increase with increasing energy,
and as w/Q(L) decreases. Because the bandwidths
become unrealistically large for large pitch angles and
energies, the proton-whistler interactions are more ef-
ficient for small energies (~ 100 keV), and for pitch
angles that are near the loss cone.

Next we show some calculations to obtain the diffu-
sion coefficients for second order resonant interactions.
The diffusion functions are given in (35), where the
number of interacting harmonics n, is a function of
the width of the spectrum Aw/w, as defined in (8).

L =35
[+]
6
_GL = 6.50 5
4° )
L .75
o
2 9
1 1 i
100 300 500

(4] 1 1 L 1 0o 1 1 1 1

500 Y

Energy (keV)

Figure 5. Maximum extent in geomagnetic latitude AAL
versus proton energy in keV for L = 3.5 and 2. The fre-
quencies and pitch angles are as in Figures 4 and 6.
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Figure 6. Wave frequency bandwidth, (Aw/w)L, versus
proton energy in keV, for L = 3.5 and 2. These bandwidths
correspond to the resonance lengths as given by AAg, in
Figure 7. The frequencies and pitch angles are as in Figures
4-7.

They depend on the normalized electric field amplitudes
e=25x10"% x f. &, where fe = Qe(L)/w, and &, the
electric field amplitude, is given in volts per meter. The
energy diffusion coefficient is given in (38). The cross
pitch angle/energy and pitch angle coefficients are ob-
tained combining (38), (32) and (33).

In all the figures the diffusion functions are normal-
ized to the value that the energy diffusion function W
takes at the edge of the loss cone which is represented
by w, = W,/e:1. Here €1 ~ € sin¢,, and W, is given in
(42).

9.2. Diffusion Functions for L = 3.5

Figure 7 gives the normalized diffusion coefficients
versus the sinfy, for 8, > 0, = 6.5°, for w/Q.(L) =
0.75 and for a spectral bandwidth of Aw/w = 0.01.
The proton energy is 100 keV. We see that significant
diffusion takes place mostly near the loss cone. The rea-
sons for this have already been explained since near the

®/ Qe = 0.75 100 keV
Aw
. - = 0.01
. 10 P
-]
2
-
:
g 05 -
|
g
a
0.0

0.4 0.6 0.8
Sin @ L

0.2

Figure 7. Normalized diffusion functions versus sinéyr, for
6r > 6.5° and for L = 3.5. The diffusion functions in all
the figures are obtained for second-order resonant protons.
The wave frequency is w/Q%(L) = 0.75, and the spectral
bandwidth is Aw/w = 0.01. The proton energy is 100 keV.
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loss cone protons and whistlers stay in gyroresonance
over the entire resonant length, which extends to all
the resonant harmonics that contribute to the interac-
tion. We also observed that the dominant diffusion co-
efficient is the energy term. However, the contribution
of the cross energy/pitch angle coefficient is also signif-
jcant. We show that w, = 2.5 x 1073, If the proton
energy is 500 keV, and the other physical parameters
remain the same, we find that w, = 2. x 10~% which
is very small. This is because at large energies, the
particles and the waves cannot stay in gyroresonance
over the entire interaction length even for small pitch
angles. Thus second-order resonant diffusion is more
efficient for protons which energies are ~ 100 keV, and
whose pitch angles are near the loss cone.

In Figure 8 we represent the normalized diffusion
functions versus sin 8, for 0y, > 6.5°, and for w/Q (L) =
0.9. For the top panel the proton energy is 100 keV,
the frequency bandwidth Aw/w = 0.005, and w, =
7.5 x 1074 For the lower panel the proton energy is 300
keV, Aw/w = 0.01, and w, = 5.4 X 104, Significant
diffusion for small pitch angles are found in both cases.
This is because as w — $§.(L) the interactions occur
very close to the equator and the bandwidths needed to
overlap all the harmonics are smaller than for smaller
values of w.

®/Qe= 09 100 keV

A® _ ¢.005
(O]
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0.5
o
=
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0.0 T 1 T 1 T 1
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Figure 8. Normalized diffusion functions versus sinéy, for
6 > 6.5°, and for for L = 3.5. The wave frequency is
w/Q(L) = 0.9. For the top panel the proton energy is 100
keV, and for the lower panel 300 keV. The spectral band-
widths for the upper panel is Aw/w = 0.005, and for the
lower panel is Aw/w = 0.01.
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9.3. Diffusion Functions for L =2

Figure 9 represents the diffusion functions versus
sind;, for 0, > 16°. The proton energy is 100 keV,
w/Qe(L) = 0.5, and Aw/w = 0.01. Because of the
large pitch angles, diffusion in energy and pitch angle
are almost comparable near the loss cone. The diffusion
functions are normalized as in the previous calculations
in section 9.2, here w. = 4.27 x 1073,

The maximum extent of the resonant region AAp is
defined in (9). For pitch angles near the loss cone &k, p
and AA; are small. Given a fixed value of Aw/w, the
actual interaction region extends over 0 < A < AA,
where AA is given in (7). For pitch angles such that
sinf;, < 0.36, then AA > AAp. In this case all possible
harmonics contribute to the interaction. For sinf; >
0.36, AA < AA and the interaction region do not cover
the total range of possible contributing harmonics. In
this case the number of harmonics n is defined in (8).
As we can sce in Figure 9 for small values of sind,
all harmonics add up. When sin€, > 0.36 only a few
harmonics contribute and the diflusion coefficients are
small.

The frequency ratio w/Q.(L) = 0.5 is quite efficient
for low L shells; however, it does not work so well for
the L = 3.5 shell. Similar calculations for this frequency
and bandwidth at L = 3.5, show that the number of
harmonics that contribute, even for pitch angles near
the loss cone, is small and do not cover the whole range
of possible harmonics.

Figure 10 shows the diffussion functions versus sin 0,
for 0, > 16°. The proton energy is 100 keV, and
w/Q(L) = 0.75. For the upper and lower panels the
bandwidths are Aw/w = 0.005 and 0.01, respectively.
We see that the proton-whistler interactions are more
efficient for smaller L shells. As a matter of fact, calcu-
lations at L = 3.5, for this frequency and energy and a
bandwidth of Aw/w = 0.005, show that the harmonics
do not overlap for small pitch angles. For the upper
and lower panels we find w, = 8 x 107 and 3 x 1073,
respectively. For the bandwidth of 0.01 the harmonics
overlap for all values of ¢, and the interactions are very
efficient for large pitch angles. However, as explained in

0/Q, = 05 100 keV
1.5
A0 _ 9.01
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Figure 9. Normalized diffusion functions versus siné, for
0L > 16°, and for L = 2. The wave frequency is w/Q.(L) =
0.5, the spectral bandwidth is Aw/w = 0.01, and the proton
energy is 100 keV.
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Figure 10. Normalized diffusion functions versus sin 4y, for
0L > 16°, and for L = 2. The wave frequency is w/Q(L) =
0.75, and the proton energy is 100 keV. The bandwidths are
for the top and lower panels 0.005 and 0.01, respectively.

section 2, since ¢ is very close to ¢., we may have to cal-
culate the refractive indices using a finite temperature
plasma.

Figure 11 shows the diffussion functions versus sin €,
for 8, > 16° and w/Q.(L) = 0.9. For the top panel
the proton energy is 100 keV, Aw/w = 0.003, and
we = 3.2 x 107%. For the lower panel, we have 300
keV, Aw/w = 0.01, and w, = 6.8 x 107%. Comparing
these results with those in section 9.2, we show that
the interactions are more eflective for L = 2 than for
L = 3.5. This is mostly due to the fact that as L and
wp/Sle(L) decrease, ¢ — ¢, so 7 is such that the waves
and protons can satisfy the resonance condition in (5).
As a result, the distances between resonant harmonics
as described by (8), are also smaller as L decreases.
Thus the frequency bandwidths required to cover the
entire range of possible resonances become also smaller
with decreasing L, which contributes to the efficiency
of the interactions.

10. Summary and Conclusions

We have investigated the diffusion of protons by oblique
whistler waves, which near the magnetic equator, prop-
agate in a quasi-electrostatic mode. We assume a spec-
trum such that the ratios of the waves [requencies
to the equatorial electron gyro-frequencies are 0.5 <
w/Qe(L) < 1. If the waves appear Doppler shifted to
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Figure 11. Normalized diffusion functions versus sin 4L, for
8. > 16°, and for L = 2. The wave frequency is w/Q2(L) =
0.9. For the top and lower panels the proton energies are
100 and 300 keV, respectively. The bandwidths are Aw/w =
0.003 and 0.01, respectively.

some harmonic of the proton gyrofrequency, they can
interact strongly with protons whose energies are sev-
eral hundred keV. The Fokker-Planck equation has been
integrated along the flux tube by considering the con-
tribution of multiple harmonics of the proton gyrofre-
quency. The main results of our theoretical analysis are
the following:

1. For second-order resonant interactions the inho-
mogencity of the geomagnetic field may be compensated
by the resonant-frequency variation along the field line.
Thus the interactions resemble those of a homogeneous
plasma, and protons and waves can stay in gyroreso-
nance over long distance along the field lines.

2. For second-order resonant interactions the diffu-
sion coefficients in energy, cross energy/ pitch angle,
and pitch angle are linearly proportional to the ampli-
tudes of the waves’ electric fields.

3. The lengths of the regions for resonant interactions
along the flux tube, decrease with the protons energies
and pitch angles. Thus the wave frequency bandwidths
which are required to cover the interaction regions, are
small for small energies and pitch angles. The required
bandwidths also increase with decreasing w.

Numerical applications of this theory have been car-
ried out for the shells L = 3.5 and 2. The frequen-
cies bandwidths are in the range Aw/w ~ 0.005 — 0.01.
These calculations show the following:
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1. The proton-whistler interactions are more effective
for small L shells, due to the fact that as L decreases
the harmonics resonances become closely spaced. They
are also quite efficient as w — (L), because then the
interactions are also confined very close to the equator.
As a matter of fact, for L = 2 the ratio w/Q.{L) > 0.5
for efficient energy and pitch angle diffusion. For L =
3.5, w/Qe(L) > 0.75 to obtain any significant diffusion.

2. For the L = 3.5 shell we show that the interactions
are more efficient for protons of relatively small energies
(~100 keV), and whose pitch angles are small. As the
pitch angles increase, the diffusion coefficients become
very small because the protons and the waves do not
stay in gyroresonance over the entire interaction length.

3. The dominant diffusion coefficient is in energy but
the cross energy/pitch angle coefficients is also signifi-
cant for pitch angles which are near the loss cone. For
the L = 2 shell and for w ~ 0.5Q.(L), pitch angle and
energy diffusion are comparable. As w — Q.(L), pro-
tons difluse only in energy.

Appendix A: Diffusion Coefficients

In terms of the equation of motion as defined in sec-
tion 3 we have

(Av)?
e 278
vAv Ay
v, ———27'3 (46)
(v Ax)?
D#’p’ 27

where Av = AW/v, and AW is obtained from (21) in
terms of Al as

AW =

w
— Al
2,(L)
(47)
Al = £ cos&(R)YT,és
For second-order interactions, és has been given by Vil-
lalén and Burke [1993] as
vy 1
(kyrr)? cos&e(R)
By substituting cos & (R) by 7/8, combining (21), (22),
and (46) through (48), we arrrive at the results in (38)
and (32), (33).

(6s) =7 Te (48)

Appendix B: Energy Diffusion Equation

Let us consider second-order resonant protons. Near
the loss cone, we may expand G(v, 1) in powers of { as

G(v,0) = R(v) + (¢ =€) T(w) £ (¢ = ¢e)* S(v)  (49)

Here the plus sign is taken when ¢ > (., and the minus
when ( < (., where {, = sinf.. Near the loss cone,
01 ~ 0., we show

208
-— 8- CGW =555 (50)

TBY

119




21,340

where p; is defined in (42). Integrating (50) from ¢ =
(. — € to (. + ¢, letting ¢ — 0, substituting G by its
expression in (49) we find

3
S() = ——— " R(v)
TBY P1

(51)

Next we solve (37) for 0 < ¢ — {; < (., by equaling
powers of {, we find

(52)

The function R(v) satisfies the second-order differential
equation

d*R(v) dR(v)
2 _ 2.3 _
v v— + M v R(v)=0 (53)
where 11 _ 1
N - B
We ‘7B Hm Tp] (54)

where 7 = TB U, fm = sin® 0, and 0, < 05 < Om.
The solutions to (53) are Bessel functions. By choosing
the solution that goes to zero as v — 0 we get

R@)= C [VBA(-A°v) + B'(-3%v)|  (55)

where C is a constant. The functions A and B’ are
derivatives of the Airy functions.

Consider that 0 < v < vy, where vy is given in (11).
For energies v2 < v2, the precipitation life times, 7, of
protons near the loss cone are obtained from (dR/dv) =

0 at v = vps. This leads to Avay° ~ 3, which solves for
7p as function of the velocity v, bounce time 75, and

the waves amplitudes through W, as given in (42).
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ABSTRACT

 Resonant electron-whistler interactions in the plasma sheet are investi-
gated as possible explanations of the nearly isotropic fluxes of low—energy
electrons observed above the diffuse aurora. Whistler~mode waves, prop-
agating obliquely to the geomagnetic field with frequencies near or larger
than half the equatorial electron cyclotron frequency, can interact with the
low—energy electrons found in the plasma sheet. A Hamiltonian formulation
is developed for test particles interacting with a coherent, chorus—emission
specira. We consider the second—order resonance condition which requires
that inhomogeneities in the Earth’s magnetic field be compensated by a finite
bandwidth of wave frequencies to maintain resonance for extended distances
along field lines. Numerical calculations are presented for the magnetic shell
L = 5.5 for wave amplitudes of ~ 107% V/m, using different frequency and
magnetospheric conditions.

I. INTRODUCTION

The diffuse aurora is formed by nearly isotropic fluxes of electrons, mostly
with energies <10 keV, that precipitate from the plasma sheet [1, 2]. A num-
ber of studies have attempted to explain the diffuse aurora by the interaction.
of the electrons with electrostatic eleciron cyclotron harmonic (ECH) waves.
However, it does not appear that the amplitudes of ECH waves are large
enough to account for the observed electron precipitation (3]. Ref. [4] pro-
posed that the < 10 keV electrons that form the diffuse aurora, are precipi-
tated by whistler-mode waves that propagate along the magnetic field with
frequencies w — Q.. They sucessfully explained how the resonant energy of
the electrons could be well below the characteristic energy or magnetic en-
ergy per particle E.. Normalized to the electron rest energy E. = (Qe/wy)?,
where (. and w, are the electron gyro and plasma frequencies respectively.

Refs. [2], and [5], have interactions between low energy electrons and
obliquely propagating chorus emissions. They consider first~order resonant

121




interactions with upper-band chorus, where the wave frequencies are >
0.5 .. The wave magnetic field amplitudes for chorus were reported to be
in the 1~100 pT. If these waves propagate near the resonance cone they be-
come quasi—electrostatic. In this way they can even interact with suprather-
mal electrons and efficiently precipitate low—-energy electrons into the atmo-
sphere, leading to the morningside diffuse aurora.

Figure 3 of Ref. [6] gives an example of waves in this frequency band, ob-
served by the CRRES satellite while passed through the inner plasma sheet
during a period of magnetic quieting. Near apogee, where CRRES encoun-
tered nearly isotropic plasma sheet electrons it also measured waves covering
the band between 0.5Q, and (.. In the case shown in Ref. [6] electric field
amplitudes of ~ 107® V m™! appear in the frequency band of interest and,
during disturbed times, the intensities of these waves may be several orders
of magnitude stronger. Here we wish to demonstrate that even the low am-
plitudes are suffient to explain diffuse auroral electron precipitation.

Chorus and triggered emissions are characterized by coherent wave spec-
tra. Triggered emissions are artificially stimulated inside the plasmasphere
by ground based transmitters [7]. VLF chorus is frequently associated to
microbursts of electron precipitation [8, 9]. The non-linear interactions be-
tween energetic electrons and the waves also produce almost monochromatic
wavelets which generate chorus elements in a manner similar to that of ar-
tificially stimulated emissions [10]. Because of the phase coherence of these
emissions, the electrons may stay in gyroresonance for long distances along
the field lines, leading to second—order resonant interactions [11].

Here we consider waves with 0.45 < 7= < 1 that propagate obliquely to
the background geomagnetic field. In contrast with the work in Ref. [2],
we consider second—order interactions for a broad spectrum of VLF chorus.
The paper is organized as follows: Section II presents the resonance condition
for electron interacting with whistler—~mode-waves. Section III describes the
Hamiltonian theory for second—order interactions. Numerical calculations
for low energy (< 10 keV) plasmasheet electrons are given in Section IV.
The amplitude of the waves are &~ 107® V m™'. Section V contains the con-
clusions.

II. RESONANT ELECTRON WHISTLER INTERACTIONS

Figure 1 represents the geometry of wave-particle interactions with a
whistler-mode wave of frequency w and wave vector k, propagating in a
field-aligned duct. The geomagnetic field B, is along the z direction and
¢ is the angle between k and B,. Near the equator, we approximate the
Earth’s dipole magnetic field as having a parabolic profile. If we define & as
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the ratio between the electron gyrofrequency at a location z along the field
line Q.(z), and the equatorial value of the gyrofrequency Q(L), we show

h:%—j—%:l+(é)z (1)

where z o~ RgLA, Rg is the Earth’s radius, L is the magnetic shell parameter,
A is the geomagnetic latitude, and rz = (—‘Q—E)REL.

Figure 1. Schematic representation of whistler electrons interac-
tions. The coordinate system is despicted here.

The refractive index 7 = < satisfies the dispersion relation

w

2

NN Y
TENE @) eosgl -1 (2)

The angle ¢ is such that cos ¢ < coso < 1. The resonance cone angle ¢, is
defined as cos ¢, = n%

Here we consider relativistic electrons, normalize their energies to (m.c*)™",
their velocities to ¢!, and their momenta p to (mec)™t. The relativistic
factor is yr = [1 —v2]~%, where v is the particle velocity. Resonant whistler—
electron interactions must satisfy the condition

l—nu'vn—fg—e—%—=0 (3)

w YR

where, £ = 0,=1,=2... is the harmonic number. Here v and m = 7 cos 0.
are the parallel components of the particle’s velocity and refractive index,
respectively. In terms of the local pitch angle vy = vcos§. Here g is the
angle between B, and v. Wecall p = sin? (L), where 6(L) is the equatorial
pitch angle. Here (L) > ., where 6. is the pitch angle at the edge of the
loss cone, and u. is the corresponding value of p. In addition, we require
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that (L) < 8y, thus the range of resonant equatorial pitch angles is: pe <
B<pM-

If the waves propagate near the equator in the region 1 < h < hpr, where
b is defined in Eq. (1), then there exists a mapping between h and g. From
Eq. (3) we obtain the following relation between par and ks as function of
the resonant energy vg and &,

m:m Ll-rff,vn } ()

hy + frr

where we define fr = =%+—. The waves exist near the equator and their ex-
0.(0) q

tend along the field lines is such that k < hyy, Where A is defined in Eq. (1).
Because interactions take place near equatorial regions, then hys is close to
one. The upper limit on the resonant equatorial pitch angles 07, 1s obtained
from Eq. (4) and depends on the extend of the interaction region as given

1I1. HAMILTONIAN THEORY

We normalize length s by r7%, call 7 = tQ.(L), and define & = 57757 <
1. The dimensionless electric field amplitudes are €; = lal& g5r i =1,2,3,

MelW

where & are the components of the wave electric field. The relative phase
angle between the wave and the electron is:

&.—:ZA—I—?‘LL knds/—-h—:—z‘j‘T (5)

where A = arctan(Z2), P, are components of the canonical momentum. For
B ) L=y P

resonant electrons % = 0, which leads to the resonance condition in Eq. (3).
To first order in wave electric field amplitudes, the time-dependent Hamil-

tonian [12] is:

S 4

P = .
H="— :Y_ Z Tt(Ilelh 5) sin 61 (6)

0 [=—

where P = ,/v2 —1, and Py is the parallel component of the canonical

momentum. Here

1 Q .
T, = ~5p 215(—5 (g1 +e2) Ti-1{ksp) + (e1— g9) Tes1(ELp)]

+ & %jz(lﬁp) (7)
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1
where the J’s are Bessel functions and p = (;;:) [%%]E, is the Larmor
radius. In terms of P., the perpendicular component of the canonical mo-
mentum, the canonical action is [ = %%l PZ.
After differentiating Eq. (5) twice with respect to s, we show

P _ o) _ _P
ds? ot T T 2
s (&py)

where the constant c; depends on the magnetic field inhomogeneities and
the wave frequency. For second—order resonances the inhomogeneity of the
magnetic field is compensated by variation of the resonant frequency along
the field lines [13]. In this case a; = 0, which leads to the frequency variation
along the field line

1 dw  1n [R=T [2
o V1o [7RV1 ”h‘A(L’”)“] (®)

where A(L,v) = %

After solving for the equations of motion the change in action, energy
and pitch angle are

{p T
Al = —— [— T, (10)
e V1)
w
= —— 1
A‘}’R er(L) AT ( l)
2 9.
Ap = [ -‘m#] Avr (12)
Tr — w

where §§2) is defined in Eq. (8). Note that for second—order resonances,
o, = 0, and then the changes in the physical variables are proportional to
€ /2 This is to be contrasted to first-order interactions where these changes
are linear with the electric field amplitudes.

IV. NUMERICAL APPLICATIONS

We have conducted some numerical calculations based on this model
for the magnetic shell L = 5.5. The equatorial electron gyrofrequency is
Q.(L) = 0.33 x 10° s~'. The ratio between the electron plasma and the
equatorial cyclotron frequencies, is 5—:—:—"7 = 3. The width of the loss cone is

. = 3.25°. Calculations were conducted for the frequencies ﬁ':(,_L) = 0.53,
and 0.75. We assume that the waves have a coherent spectrum of finite fre-
quency bandwidth, as occurs in the chorus and triggered emissions.

125




Figure 2 plots the energies of resonant electrons in keV versus cos ¢, where
¢ is the angle between the wave vector and the geomagnetic field. The elec-
tron energies represent solutions for the resonance condition at the equator,
for a maximum geomagnetic latitude of 5°. For panel A, O—:(,ff = 0.55, and
we represent the harmonics { = 0,1 as indicated next to the curves. For
panel B, af(’—— = (.75 and we only represent the first harmonic { = 1. We
also observe that for waves to interact with electrons of energy < 1 keV, their
angles of propagation ¢ must get closer to the resonance angle ¢.. Also, if

w — Q.(L) then the electron energy decreases below 1 keV.

ENERGY keV

0.55 0.7 0.9 1

COS o

Figure 2. Electron energy in keV versus cos ¢. For panel A, and
B, Q—:Z—L—) = 0.55, and 0.75, respectively.

1.2

C.8

0.4

3.5° 15° 26°  3.5° 15° 25°
o)
Figure 3. Change in pitch angle A§(L) versus §(L) for { = 1

harmonic.

Figure 3 represents the change in equatomal pitch—angle Ay versus the
pitch-angle in degrees for second—order resonances, and for interactions for
the first £ = 1 gyroharmonic. The change in pitch—angle is obtained by
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combining Eqs. (8) through (12). Panel A represents the frequency ratio
ﬁfi') = 0.55 at three propagation angles cos ¢ = 0.56, 0..6, and 0.99 as indi-
cated next to the curves; the corresponding resonant energies are 0.4, 1.75,
and 5.5 keV. Pannel B repesents the frequency ratio 5z = 0.75 at three
propagation angles cos ¢ = 0.78, 0.88, and 0.99; the corresponding resonant

energies are 140, 470 and 700 eV.

A

.6 T 1 1
™
'S = 8
=
x ~ 66
= 1 6
\?:‘; -
=
] 4 | ' | ! J

3.5° 15° 25°

e (L)

Figure 4. Change in electron resonant energy 7':‘2—'_{3{ versus 9(L),
for £ = 1 harmonic.

Figure 4 shows the normalized changes in energy as %”':_51-, versus reso-
nant equatorial pitch angles. The panels correspond to the same examples
as presented in Figure 3. The changes in energy are obtained as in Eq. (11),
by assuming that the second—order resonance condition is satisfied with the
first gyroharmonic. Note that as w — Q.(L) larger changes in energies are

calculated than for smaller values of the ratio 0_:(,'55

VI. CONCLUSIONS

We have presented a test—particle, Hamiltonian theory for the interac-
tions of whistler-mode waves and low energy (< 10 keV) electrons near the
equatorial plasma sheet. The main results are:

(1) Efficient whistler-electrons interactions require that the ratios D 2
0.5. For waves propagating near the resonance cone and for w — Q.(L), res-
onant energies are < 1 keV.

(2) Second-order resonant interactions require a coherent spectrum of
multiple—frequency waves such as found in chorus. In this case the inhomo-
geneities of the magnetic field are compensated by variations of the resonant
wave frequency. Thus the electrons and the waves stay in gyroresonance long
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distances along the field lines, which render the interactions very efficient.

(3) Numerical calculations have been conducted for the L = 5.5 shell.
As an example we considered wave amplitudes of 10~¢ V m™!, consistent
with observations from the CRRES satellite. Changes in pitch-angle can be
> 1° for electrons with pitch-angles near the edge of the loss cone. Thus,
whistler-electron interactions are viable explanations of the nearly isotropic
precipitation of low—energy electrons from the plasma sheet to form the dif-
fuse aurora.
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Pitch angle scattering of diffuse auroral electrons

by whistler mode waves
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Abstract. Resonant electron-whistler interactions in the plasma sheet are
investigated as possible explanations of the nearly isotropic fluxes of low—energy
electrons observed above the diffuse aurora. Whistler mode waves, propagating
near the resonance cone with frequencies near or larger than half the equatorial
electron cyclotron frequency, can interact with low-energy plasma sheet electrons. A
Hamiltonian formulation is developed for test particles interacting with the coherent
chorus emission spectra. We consider the second—~order resonance condition which
requires that inhomogeneities in the Earth’s magnetic field be compensated by a
finite bandwidth of wave frequencies to maintain resonance for extended distances
along field lines. These second—order interactions are very efficient in scattering the
electrons toward the atmospheric loss cone. Numerical calculations are presented
for the magnetic shell L = 5.5 for wave amplitudes of ~ 107® V/m, using different

frequency and magnetospheric conditions.

1. Introduction

The pitch angle scattering ‘of energetic electrons by
whistler waves in the the Earth’s radiation belts is a
long-standing research problem [Lyons and Williams,
1984, and references therein]. Whistler waves are re-
sponsible for the precipitation of electrons in both the
plasmasphere and the plasma sheet [Bell, 1984]. As
electrons scatter toward smaller pitch angles, they give
up small quantities of energy, amplifying the waves to
the point where the interaction becomes self-sustaining.
The limit for stably trapped particle fluxes was first
investigated by Kennel and Peischek [1966), and later
in self-consistent quasi-linear diffusion models by Be-
spalov and Trakhtengerts (1986, Villalén et al. [1989)],
and Villalon and Burke [1991].

Past studies have considered whistler waves for which
the ratio between the wave and the electron cyclotron
frequencies is w/Q, < 1. In this case, only electrons
whose energies are larger than or of the order of the
magnetic energy per particle E., may interact with the
waves. Normalized to the electron rest energy, E. =
(Q./wp)’. Here, Q. and wp are the electron cyclotron
and the plasma frequencies, respectively. As pointed
out by Johnstone et al. [1993], in the outer plasma
sheet the threshold energy for resonant interactions is
estimated to be > 10 keV. In this paper we investigate
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the possibility of resonant interactions of whistler mode
waves with electrons with energies well below 10 keV.
For these interactions to take place, the wave frequency
maust be close to Q..

The diffuse aurora is formed by nearly isotropic fluxes
of electrons, mostly with energies of <10 keV, that pre-
cipitate from the plasma sheet [Johnstone, 1983; Inan
et al, 1992]. A number of studies have attempted
to explain the diffuse aurora by the interaction of the
electrons with electrostatic electron cyclotron harmonic
(ECH) waves [Swift, 1981]. However, it does not appear
that the amplitudes of ECH waves are large enough to
account for the electron precipitation [Belmont et al.,
1983; Roeder and Koons, 1989]. Johnstone et al. [1993]
proposed that the < 10 keV electrons that form the dif-
fuse aurora may be precipitated by whistler mode waves
that propagate along the magnetic field with frequen-
cies such that w — .. They sucessfully explained how
the resonant energy of the electrons could be well below
E..

We note that Figure 3 of Burke et al. [1995] gives
an example of waves in this frequency band, observed
by the CRRES satellite while it passed through the in-
ner plasma sheet during a period of magnetic quiet-
ing. Near apogee, where CRRES encountered nearly
isotropic plasma sheet electrons, it also measured waves
covering the band between 0.5Q, and .. Our experi-
ence is that these frequencies are detected by the CR-
RES plasma wave experiment only in the presence of
central plasma sheet electrons. In the case shown by
Burke et al. [1995], electric field amplitudes of ~ 10~
V m~?! appear in the frequency band of interest. Dur-
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ing disturbed times the intensities of these waves may
be several orders of magnitude stronger than in the case
presented. Here we wish to demonstrate that even the
low amplitudes are suffient to explain diffuse auroral
electron precipitation.

Inan et al. [1992] and Inan and Bell [1991] have
studied interactions between low—energy electrons and
obliquely propagating chorus emissions. They consider
first—order resonant interactions with upper band cho-
rus, where the wave frequencies are > 0.5{,. The wave
magnetic field amplitudes for chorus were reported to
be in the range of 1-100 pT. Inan et al. [1992] used
wave magnetic amplitudes of 1 pT in their calculations.
If these waves propagate near the resonance cone, they
become quasi—electrostatic. In this way they can even
interact with suprathermal electrons [Jasna et al., 1992]
and eficiently precipitate low—energy electrons into the
atmosphere, leading to the morningside diffuse aurora.

Chorus and triggered emissions are characterized by
coherent wave spectra. Triggered emissions are artifi-
cially stimulated inside the plasmasphere by ground-
based transmitters [Burtis and Helliwell, 1976; Helli-
well, 1993]. VLF chorus is frequently associated with
microbursts of electron precipitation [Rosenberg et al.,
1981; Parks, 1978]. It is believed that chorus is gen-
erated through a cyclotron instability which is pro-
duced by anisotropic warm electrons in the equatorial
plasma sheet [Haeshimoto and Kimura, 1981; Ohmi and
Hayakawa, 1986]. The nonlinear interactions produce
impulsive precipitation of the electrons [Hardy et al.,
1990] due to the filling of the loss cone as described by
Davidson and Chiu [1987]. The nonlinear interactions
between energetic electrons and the waves also produce
almost monochromatic wavelets, which generate chorus
elements in 2 manner similar to that of artificially stim-
ulated emissions [Sazkin and Hayakawa, 1992]. Because
of the phase coherence of these emissions, the electrons
may stay in gyroresonance for long distances along the
field lines, leading to second—order resonant interactions
[Dysthe, 1971; Nunn, 1974].

Here we consider waves with 0.45 < w/Q, < 1
that propagate obliquely to the background geomag-
netic field. These waves may be generated by the linear
cyclotron instability of warm electrons interacting with
the waves as described by Kennel and Petschek [1966]
and Johnsione [1983]. For linear interactions the dif-
fusion of the electrons into the loss cone is weak, and
the precipitation does not occur in an impulsive way
as in the microbursts [Davidson, 1986a and 1986b]. If
wave amplitudes grow to some critical levels, nonlin-
ear effects allow for second-order interactions to take
place. Second—order interactions require that the wave
amplitudes be large and have a finite frequency spectral
spread to compensate for the magnetic field inhomo-
geneities [ Villalon and Burke, 1993]. Second-order in-
teractions are defined in terms of the variation of the rel-
ative phase angle between the waves and the electrons,
which leads to a specific change of the wave frequency
along the field line, as given in section 5. In contrast
with the work by Inan et al. [1992], we consider second-
order interactions for a broad spectrum of VLF chorus.

VILLALON AND BURKE: DIFFUSE AURORAL ELECTRON PRECIPITATION

The wave amplitudes required for efficient electron pre-
cipitation are smaller with the second—order resonant
interactions than those used by Inan et al. [1992]. We.
assume electric field amplitudes of =~ 16~% V m~!. For
a refractive index n < 30 this corresponds to wave mag-
netic field amplitudes of < 0.1 pT.

The paper is organized as follows. Section 2 presents
the basic equations that describe whistler mode waves
propagating in a cold magnetized plasma. Section 3
considers electron-whistler resonant interactions in the
Earth’s inhomogeneous magnetic field. We establish a
mapping between the location of the interactions along
the field line and the equatorial pitch angles of elec-
trons resonant at the first cyclotron harmonic. Section
4 contains the basic equations of a test particle Hamil-
tonian theory. In section 5 we integrate these equations
along magnetic field lines. Conditions for second—order
resonances are also given. Section 6 contains numeri-
cal applications for plasma sheet electrons. We consider
second—order resonant interactions of test particles with
multiple-frequency waves. The changes in pitch an-
gle and energy are calculated. For wave amplitudes of
~ 1078V m~? we show that the changes in pitch angle
may be > 1° for electrons near the edge of the loss cone.

2. Whistler Mode Waves

Figure 1 represents the geometry of wave—particle in-
teractions with a whistler mode wave of frequency w
and wave vector k, propagating in a field-aligned duct.
The geomagnetic field B is along the z direction, and ¢
is the angle between k and Bo. For waves propagating
near the resonance cone, cos ¢ ~ w/{2,, the refractive
indices are very large, and the waves become quasi-
electrostatic [Sazhin, 1993]. In terms of X = (w,/w)?,
the refractive index n = ck/w satisfies the dispersion
relation

Y

X

Figure 1. Schematic representation of a whistler mode
wave of frequency {w, k}, interacting with electrons and
protons. The Earth’s dipole magnetic field is Bo, the
geomagnetic latitude is A, and s is the coordinate along
the flux tube.
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2 _ X
n° = 1+ 3
(1)
§ = &lcosﬂ—l
w

Near the equator, the angle ¢ is such that cos dr <
cos ¢ < 1. The resonance cone angle, ¢., is defined as

cos ¢r = Q—e(a (2)

We use the argument (L) to denote equatorial values
of physical quantities. If we call §(L) the value of 6 at
the magnetic equator, we show that when ¢ = ¢, then
§(L)=0.

The group velocity in the parallel direction can read-
ily be obtained from (1) considering v, = dw/dky.
Normalizing vy to c~1, we find that

1
vgv“ = ;]ﬂ t(é’ ¢)

()
2

1+cos®¢(1——)

16,9) o

where 7 = ncos ¢. Note that as §—0,t(6,¢) — sin® ¢.
The electric field, E, of ‘the wave is represented by

E=%& cosU—§E sin¥ —2E cos¥  (4)

where %, ¥, and Z are unit vectors, ¥ = ky z+k)z—wt,
and kj, k. are the components of the wave vector along
and perpendicular to Bo. The ratios of the electric field

components are

& _ 1 __ X
& 7 (2=) — | cos ¢}
()
& _ 1-X-(nsin $)?
£ 72 sin ¢ cos @

For the case of waves propagating near the resonance
cone, w ~ (L) cos 4|, the equatorial refractive index
7°(L) > 1. Its electric field is linearly polarized, having
components |£>/&1] < 1 and |€1/E3| ~ —(sin ¢/ cos §).
In this case the wave becomes quasi—electrostatic, since
E is almost in the direction of k, and the group veloci-
ties g ~ 7~ ! are very small. ' :

Near the equator, we approximate the Earth’s dipole
magnetic field as having a parabolic profile

h=h%2i—)=1+(%>z (6)

where z ~ RgLA, Rg is the Earth’s radius, L is the
magnetic shell parameter, A is the geomagnetic lati-
tude, and rp = (21/ 2/3)RgL. The equatorial gyrofre-
quency is (L), and Q2 represents the gyrofrequencies of
sither electrons or protons at locations s away from the
equator along the field line. Equation (6) is obtained

from a Taylor expansion of the dipole field and is an ex-
cellent representation of the magnetic geometry within
420° of the equator.

3. Resonant Electron-Whistler
Interactions

Here we consider relativistic electrons and normal-
ize their energies to (m.c?)~1, their velocities to ¢,
and their momenta p to (mec)™!. In what follows we
only refer to these normalized quantities. The relativis-
tic factor is yg = [1 — v°]~%/3, where v is the particle
velocity. Resonant whistler-electron interactions must
satisfy the condition ’

1—77"71"-29—6-—}-'—=0 (M
@ IR

where £ = 0,41, 42, ... is the harmonic number, and
Q. = |g|Bo/mec is the electron gyrofrequency. Here,
vy and 7| =7 cos ¢ are the parallel components of the
particle’s velocity and refractive index, respectively.

In terms of the local pitch angle, vy = vcosé. Here, 6
is the angle between Bo and v. We call u = sin? §(L),
where (L) is the equatorial pitch angle. Here, 6(L) >
8., where 8. is the pitch angle at the edge of the loss
cone, and y. is the corresponding value of x. In ad-
dition, we require that (L) < 6a; thus the range
of resonant equatorial pitch angles is p, < u < uar.
The upper limit 85 depends on the extent of the res-
onant region along the field line, as we shall explain
below. As-a function of L shell, the mirror ratio is
o = p7t = L% (4 — 3/L)Y/2. To zero order in the elec-
tric field amplitudes, a particle’s magnetic moment is
conserved. Then we may write for the parallel and
perpendicular components of the particle velacity v,
oy = o[l — pQ/QUL)M?, vy = o[u@/QUL).

As the particles move away from the equator, their
parallel velocities v decrease. We assume, however,
that the waves’ phase velocities w/kj remain constant.
That is, variations in ., w, and cos ¢ are such that
7y is constant along the near—equatorial parts of field
Lines. Given a resonant energy for the £ the harmonic,
vr = (1 +p})?, interactions take place at geomagnetic
latitudes such that 1 < h < hpr, where A is defined in
(6). For h = 1 we take 8(L) = s, and for A = hps then
8(L) = 6.. Thus there exists a mapping between h and
i, which may be obtained by solving for the resonance
condition in (7).

In terms of the resonant parallel momentum py,
where py = pr (1 - u Q/Q(L)]?, (7) becomes

1 [ 20 .
Py = o {— — \/1+pz] (8)

The equatorial parallel velocity is obtained from v} =
Pyt +pg) 7"

To find the resonant energy, we consider interactions
that take place at the equator A = 1, such that the
Tesonant pitch angle is 6(L) = 6. Next we define
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A, = T]ﬁ cos’ By — 1
D, = 2 f_‘}_i@ 7y cos b (9)
Co = [——g QC(L)] - 1
w
Then we show
D, D, ., Co,|'?

which solves for the electron momentum. The plus sign
must be taken for £ > 0, and the minus sign for £ < 0.
Note that for £ > 0, cos8(L) < 0, and for £ < 0, then
cos (L) > 0, so that in all cases D, < 0. Also note that
as cos ¢ — cos ¢y, 6(L) — 0, 7y — oo, and p; — 0, and
thus the energy of the resonant electron is very small
(i.e., < 1 keV). When the frequency of the waves w —
(L), then cos ¢, — 1, and again we have 6(L) — 0,
m — 0, and P 0.

In addition, we also consider interactions that occur
at h = h)r and for pitch angles at the edge of the loss
cone §(L) = 6.. From (8) we obtain the following rela-
tion between ppr and hps as a function of the resonant
energy g and f.:

V1—py=+1-pchy [

1+ frr
—hy + fLar

| ay

where we define f;, = w/#Q.(L). The waves exist near
the equator, and their extent along the field lines is
such that A < hpr, where h is defined in (6). Because
interactions take place near equatorial regiomns, hys is
close to one. The upper limit on the resonant equatorial
pitch angles 85 is obtained from (11) and depends on
the extent of the interaction region as given by hy.
Solving (7) for k; as a function of u, we show that for

£#0,

he = b+ [b] + (famp)? - 7% ff]m
(12)
K 2
b = YrfL - E(fL ) P)
where mypfr = (=1 +vrfL) (1 — par)~Y2. For the
Landau resonance (£ = 0),
1 1
ho=— |1 = —— 13
T [ (my v)z] (13)

For a given value of the electron energy g, (11) to (13)
establish 2 one— to— one correspondence between the
resonant equatorial pitch angles (L) and the geomag-
netic latitudes A at which the interactions are taking
place.

4. Hamiltonian Theory

The dimensionless electric field amplitudes are

. = lg| E;

T
™MeCW

(14)
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We introduce the normalized time 7 = tQ.(L) and

length s = z/r;, and define the canonical momenta
and action:
P“ = pj+e3 sin ¥
P, = p,—¢e;sm¥ (15)
Q
Py, = py—ercos¥ — e(:)z
1 QL) 2 Qe(s)z.,
= = P o 16
1= (3 e+ 22 g
and call .
> Q)"
= ‘4 2] ——= 7
Yo [1+P” + 21 Q(L)] (1 )

The relative phase angle between the wave and the elec-
tron is

¢ w
e = Z)\+TL/0 k"dsl—mT
(18)
A = arctan (M)
Py

To first order in wave electric field amplitudes, the
time—-dependent Hamiltonian is [Ginet and Heinemann,
1990; Albert, 1993; Villalon and Burke, 1993)

<00

> Y, By,s) sing,

{=—c0
/ Q
2ITL)

[(e1 + €2) Ti-1(a) + (e1 — £2) Tr41(a)] (20)

P
H=9~——
Yo

(19)

where P = (v2 — 1)*/2, and

1

2P

B
T = e3 ;” Je(a)

where the J values are Bessel functions of argument
a=kipand p=(c/Q) [2I Q/Q(L))*? is the Larmor
radius. A constant of motion is

Cr=tH - [Q (21)

w

ol

Next we solve for the equations of motion for a single
isolated resonance. To zero order in the electric fields
ds/dT = & Py/v,, where k = ¢/r1Q.(L) <« 1. For
example, at I = 5 we show that k = 4.5 x 10~%. Dif-
ferentiating (18) with respect to s, the length along the
field line, to zero order in the electric field amplitudes,
we show

. —wv,

D) 7| (22)

dé,
Sk
qs = LRt
For resonant electrons, df;/ds = 0. Then the equations
of motion for the canonical variables reduce to those of
the physical variables at the resonance. Referring to the
physical action and parallel momentum, in term of the
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length s along the field line, we find that to first order
in the electric fields,

dI £ p

s == p—" (I, Py, 8) coséy (23)
i ek dl I 1 dQ (24)
ds £ ds  py QL) ds

The evolution of the electron resonant energy 4r; and
the equatorial pitch angle x = sin? 6y, is

dI

dvr w

as W.2) & (25)
du 2 29, dvr
ds 7% -1 [ w E #] P

Differentiating (22) with respect to s and assuming
that d€;/ds = 0 yields

d3¢, 1dI :
o2 S+ B [? a:] (27)
Here,
or = rp B _ R dw  am [h-1
* Lds kpyQe(L) ds Kpy 1-—-puh
2¢ .
Rty 4] (28)
1 5 w -
= —(gi—=1) | —— 29
o &P i =1) [ﬂe(ﬂ)} (29)

where A(L,v) = ) v w/Qe(L); all other variable are
defined througliout the paper. For second—order reso-
nant electrons the inhomogeneity of the magnetic field
is compensated by the frequency variation, and then
ay = 0. In addition, if 7y = 1, then §; = 0; this is
the case of infinite acceleration studied by Roberts and
Buchsbaum [1964].
Combining equations (24) and (25), we obtain

I 1

dvr 1 [dpy Q]
ds ) [ds P QL) ds] — 0 (30)

The diffusion curves, or single-wave characteristics, are
obtained by integrating (30) along s. These are the
curves along which the representative point of a particle
in the py, p1 plane will move. If we neglect magnetic in-
homogeneities, we obtain the diffusion curves for homo-
geneous, relativistic plasmas [1+ pﬁ +pi]/2 - py/my =
const. '

5. Equations of Motion Near
Resonance

At the resonance the parallel component of the mo-
mentum, pyy(R), is given by solving for (8). The phys-
ical action is obtained from 133

19,365

2 (R
() = 22 = (31)

where A, is given in (12) and (13).

At the resonance we also obtain s, = (h, — 1)1/ 2,
Using a Taylor expansion around s = s,, we obtain for
the phase angle [ Villalon and Burke, 1993]

1 .
§=E(R)+EY (s — ) + 5 £ (s—s)*  (32)
Here, t(l) =0, and

where the subscript (R) denotes values taken at the
resonance, for I; = I(R) and py = py.
We define the length of resonant interaction as

+0co
L.
(2)

cos (&(R) + I—E_E?)_l E)

Near resonance the change in action, energy, and
pitch angle is given by

2

2
2

b3y cosé ds = 1"(-21-)

(34)

.

dI

Al = [—J ds¢ (35)
4l
Ayg = ——— AT (36)
R =M.
2 [
Aw = [—-‘ . ,‘] Ave  (37)
e—1 [ w
Here,
dI] Z p
. ==-=17, IL(R)vpt (R)vs (38)
[ds == R P [ i(R), s|

where T, is defined in (20) for the resonant values of I
and py.

If the electric field amplitudes are small compared
to the inhomogeneity of the plasma, then we may ap-
proximate fﬁz) = ay(R). For this case the changes in
action, energy, and pitch angle are proportional to ¢;,
the electric field amplitudes. In contrast, for second—
order resonances, f; [(1/¢) (dI/ds)] gy > a¢, and then

&7 ~ Bu(R) [(1/2) (dI/ds)] gy For second—order in-
teractions the changes in action, energy and pitch angle
are proportional to ] 2,

Second-order resonances require that the inhomeo-
geneity of the magnetic field be compensated by wave
frequency variations along the field line [Dysthe, 1971;
Nunn, 1974]. By considering (27) and (28), we require
that for second—order interactions, a; — 0, which leads
to the frequency variation along the field line as
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1 dw v= h—1 [20 ,——r0 1
- = = = — /1= ph — A(L

w ds ¢h 1-—ph [73\/ # A( ’U)#J

(39)

where A(L,v) is defined after (29), and we have taken

dn”/ds = 0.

6. Numerical Calculations
6.1. Resonance Condition

In this section we present some applications of the
test particle theory to plasma sheet electrons in the ge-
omagnetic shell I = 5.5. The dipole magnetic field at
the equator is B(L) = B,L~3, where B, = 3.1x10*nT,
and the equatorial electron gyrofrequency is 2.(L) =
0.33 x 10° s~1. ‘We take two values for the ratio between
the electron plasma and the equatorial cyclotron fre-
quencies, w, /(L) = 3 and 1.5. The width of the res-
onant cone is 8. = 3.25°. Calculations were conducted
for the four frequencies w/§.(L) = 0.45,0.55,0.75, and
0.85. We assume that the waves have a coherent spec-
trum of finite frequency bandwidth, as occurs in the
chorus and triggered emissions [Helliwell, 1967).

Figure 2 plots the energies of resonant electrons in

keV versus cos ¢, where ¢ is the angle between the wave

vector and the geomagnetic field. We take four val-
ues for w/Q(L) as indicated in Figures 2A - 2D, and
wp/Qe(L) = 3. The maximum geomagnetic latitude is
5°, which corresponds to hpr = 1.035. The electron
energies represent solutions for the resonance condition
as given in (10). The value for far is obtained from

cosfp = (1 — p,chM)l/z (1 + fL) (—hM -+ fL)—l. For

the frequencies w/Q (L) = 0.45 and 0.55, we consider

0 and 1; for the frequencies
w/Q (L) = 0.75 and 0.8:), we represent only the first
harmonic, £ = 1. We see that for w/Q.(L) < 0.5,
the Landau resonance £ = 0 interacts with lower—
energy particles than the first harmonic £ = 1. For
w/Qe(L) > 0.5 the first harmonic reaches lower-energy
electrons than the Landau resonance. However, as we

12

>
2o
. 0.
0
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g 08— 0.2 (e
Lo F !

L ] 4

04+ -

[ N SRS | ol o+ 1 4t

0.75 0.85 095 1 0.85 092 0% 1

cos ¢
Figure 2. Electron energy in keV versus cos ¢, using
the ratio w, /(L) = 3. The frequency ratios w /(L)
is equal to (A) 0.45, (B) 0.55, (C) 0.75, and (D) 0.85.
Figures 2A and 2B describe the cyclotron harmonics
£ = 0 and 1, as indicated next to the curves. Figures
2C and 2D use only the first harmonic £ = 1.
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Flgure 8. Electron energy in keV versus cos¢, us-
ing the ratio wp/Q.(L) = 1.5. The freqiiency ratios
w/Q(L) is equa.l to (A) 0.45, (B) 0.55, (C) 0.75, and
(D) 0.85. Figures 3A and 3B describe the cyclotron
harmonics £ = 0 and 1, as indicated next to the.curves.
Figures 3C and 3D use only the first harmonic £ = 1.

show below, only the first harmonic couples efficiently
with low energy electrons. We also observe that for
waves to interact with electrons of energy of < 1 keV,
their angles of propagation ¢ must get closer to the res-
onance angle ¢,. Also, if w — Q.(L), then the électron
energy decreases below 1 keV.

Figure 3 shows similar calculations conmsidering that
wp/Qe(L) = 1:5. Other parameters do not change. We
observe that for all the panels the electron energy is
much larger than in the case shown in Figure 2. This is
because as wp, /(L) decreases, 7 also does as given in
(1), which leads to larger values of the electron energies.

Next let us consider (11). Given 8pr, we solve (11)
for has as 2 function of the electron energy vr and the
loss cone angle pu, = sin? 6,. For the £ = 1 harmonic we
obtain

1/2
(40)
am = fi - o (1)
2(1 = pm)

where fL = fr 7r and fr = w/(L). This is the same
as {12), but now p = p.. Equation (40) defines the
range of geomagnetic latitudes at which the electron-
whistler interactions take place, 1 < A < hyy, as a func-
tion of the resonant equatorial pitch angles whose ex-
tension i1s u. < p < ppr. Note that as fL — 1, then
hy — fL Thus, as the wave frequency approaches 1,
the electrons and waves interact very near the equator
for all values of par.

Figure 4 shows the geomagnetic latitude A versus res-
onant equatorial pitch angles 63r. The latitudes are ob-
tained by solving (40) and taking A = (9/2)? (har —
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Figure 4. Geomagnetic latitudes A versus equatorial

pitch angles 8(L) in degrees. The four curves corre-
spond to the indicated frequency ratios w/Q.(L).

1)}/2. Because the electron energies are small, we as-
sume that yg = 1. We present the four cases w/Q.(L)
= 0.45, 0.55, 0.75, and 0.85. As w — Q.(L), the inter-
actions get closer to the equator, and hpr — 1. Figure
4 also shows that for interactions occuring within 1°
of the magnetic equator, the range in equatorial pitch
angles starting at the loss cone angle is ~ 3°. Then
As = (har — 1)4? = 0.037, and the frequency variation
as obtained from (39) is small. Note that as h — 1,
dw/ds — 0.

6.2. Hamiltonian Equations

We now present numerical calculations based on sec-
iions 4 and 5 for the geomagnetic shell L = 5.5. Con-
sider the case wp /(L) = 3, which gives lower resonant—
energy results than if w,/Q.(L) = 1.5. We again use the
four frequencies w/Q.(L) = 0.45,0.55, 0.75, and 0.85. A
wave amplitude of 10~° V m~?! applies to all examples.

Figure 5 represents the change in equatorial pitch an-
gle Afr versus the pitch angle in degrees for second-
order interactions. The change in pitch angle is ob-
tained by combining (34) through (38), where in (37)
Ap = sin(26r) Abr. We assume that the wave fre-
juency changes along the field line according to (39).
Figures 5A-5D correspond to the four frequency ratios.
In each panel we represent three values for cos ¢ as in-
dicated.

Figure 5A, shows the frequency ratio w/Q.(L) = 0.45
for the three propagation angles cos ¢ = 0.46, 0.5, and
0.999; the corresponding energies of the resonant elec-
trons are 1, 5, and 11 keV. Figure 5B represents the
frequency ratio w/Q.(L) = 0.55 at three propagation
angles cos ¢ = 0.56, 0.6, and 0.999; the corresponding
“zsonant energies are 0.4, 1.75, and 5.5 keV. Figure 5C
zepresents the frequency ratio w/Q.(L) = 0.75 at three
Propagation angles cos¢ = 0.78, 0.88, and 0.999; the
corresponding resonant energies are 140, 470, and 700
eV. Figure 5D represents the frequency ratio w/Q.(L) =
0.85 at three propagation angles cos¢ = 0.86, 0.88,
and 0.999; the corresponding resonant energies are 13,
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36, and 135 eV. The extensions of the resorant regions
along the field line are A = 6.3°, 5.7°, 4.3°, and 3.3° in
Figures 5A, 5B, 5C, and 5D, respectively.

Second-order interactions require frequency varia-
tions along the field line given by (39). Thus, for very
monochromatic waves the resonance region may extend
< 1° from the magnetic equator. As a matter of fact,
if waves are to interact with electrons whose resonant
pitch angles are such that 8.(= 3.25°) < 6; < 6.5°,
then the interaction region along the field line extends
for 1.4°, 1.25° 1.0°, and 0.75°, corresponding to the
frequency ratios w/Q.(L) = 0.45,0.55,0.75, and 0.85,
respectively.

Calculations have also been conducted forw,/Q.(L) =
1.5. The changes in pitch angles for all cases are about
30% less efficient than those presented in Figure 5. We
bave also made calculations for the Landau resonance
£ = 0, assuming that near the equator dny/ds = 0 to
obtain from (28)

& Rl
Kp|| 1—uh

Qo = (41)

A(L,v) p

The magnetic inhomogeneity is uncompensated by fre-
quency variations. In addition, because £ = 0, Ay =
~2vr(v% —1)"* uAvg. Near the loss cone, u ~ ., and
Ap is small.

Figure 6 shows the normalized changes in energy as
Avg (vr — 1)~ versus resonant equatorial pitch angles.
Figures 6A, 6B, 6C, and 6D correspond to the four dif-
ferent frequency ratios indicated. Each panel of Figure

6 shows same three propagation angles as in Figure 5.

The corresponding energies for each panel and for each
propagation angle are defined in Figure 5. The changes
in energy are obtained as in (36), by assuming that the

0.4
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< c
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Figure 5. Change in pitch angle A8(L) versus 6(L)
due to second-order resonant interactions at the first
cyclotron harmonic, with w,/Q.(L) = 3. The frequency
ratios w/Q.(L) is equal to (A) 0.45, {B) 0.55, (C) 0.75,
and (D) 0.85. Numbers next to the curves correspond
to values of cos ¢. The resonant energies as functions of
cos ¢ and the frequency ratio are discussed in the text.
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Figure 6. Normalized change in the electron resonant

energy Avr (YR — 1)1 versus (L) for second—order
resonant interactions at the first cyclotron harmonic,
with w,/Q.(L) = 3. The ratio w/Q.(L) is equal to (A])
0.45, (B) 0.55, (C) 0.75, and (D) 0.85. Numbers next
to the curves refer to different values of cos ¢. Resonant
energies are given in the text.

second—order resonance condition is satisfied and that
the frequency variation along the field line is as given
in (39). Note that as w — Q.(L), larger changes in
energies are calculated than for smaller values of the
ratio w/Qe(L). For example, for w/(L) = 0.45 and
Avg (yr — 1)~% = 1073, there is an energy change of
1 eV for every 1 keV of the electron’s initial energy. If
w/Q(L) = 0.85 and Avr (YR — 1)~1 = 16. x 1073, we
obtain a change of 16 eV for every 1 keV.

The electrons mantain resonance with the waves over
a certain time interval, At, over which the phase change
of the resonant electron with respect to the wave re-
mains less than, say, ©/2. By integrating (27) twice for
second—order resonant electrons we obtain,

2.(1) 1
7 —1 BDyr PP

71"'1 1

b
At = — - 2
= lve (42)

AO(L)

e

Figure 7. Change in pitch angles AB(L) versus equa-
torial pitch angles (L) due to first-order interactions at
the first cyclotron harmonic. We use w/Q(L) = 0.75.
Numbers next to the curves refer to values of cos ¢.
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The time duration as obtained from (42) is consistent
with Tesonance lengths that correspond to 1° to 3° lat-
itude from the equator.

Figure 7 shows the change in pitch angle versus ini-
tial pitch angle for first—order resonant electrons. The
wave frequency remains constant along the field line.
Thus «, is finite but at the equator where b = 1,
a; = 0. The changes in pitch angle and energy are
linear with the electric field amplitudes. We take the
example w/Q(L) = 0.75. The three angles of propaga-
tion are cos ¢ = 0.76,0.78,0.88, and the corresponding
resonant energies are 165 eV, 466 eV and 1.5 keV, re-
spectively. The wave amplitude is 107 V m~i. We
see that first—order resonant interactions do not give
electron scattering as strong as when second—order res-
onance conditions prevail.

7. Summary and Conclusions

We have presented a test particle theory for the in-
teractions of whistler mode waves with < 10-keV elec-
trons near the equatorial plasma sheet. A Hamiltonian
formulation has been developed for interactions with a
coherent spectrum of multiple—frequency waves such as
those found in the natural chorus emissions. The main
results are as follows:

1. Efficient whistler—electron interactions require that
the ratios between the wave and the equatorial elec-
iron frequencies be such that w/(L) > 0.5. For
waves propagating near the resonance cone and for
w — Q(L), resonant energies are <1 keV.

9 Ve establish a mapping between the resonant,
equatorial pitch angles and the geomagnetic latitudes
where the resonances take place. For interactions that
occur within 1° of the magnetic equator, the range of
resonant pitch angles extends about 3° from the edge
of the loss cone.

3. Second-order resonant interactions require that
inhomogeneities of the magnetic field be compenseted
by wave frequency variations. In this way, electrons
and waves stay in gyroresonance for relatively long dis-
tances along the field line. Within a few degrees of the
magnetic equator the required frequency variations are
small, and the wave spectrum is relatively narrow.

4. Numerical calculations have been conducted for
the I = 5.5 shell. As an example we considered wave
amplitudes of 10~% V m~!, consistent with observations
from the CRRES satellite. Changes in pitch angle can
be > 1° for electrons with pitch angles near the edge of
the loss cone. This means that the waves can scatter
electrons into the atmospheric loss cone very efficiently.
Thus whistler—electron interactions are viable explana-
tions of the nearly isotropic precipitation of low—energy
electrons from the plasma sheet to form the diffuse au-
rora.
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Interaction of ring current and radiation belt
protons with ducted plasmaspheric hiss
2. Time evolution of the distribution function
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Space Physics Research Laboratory, Atmospheric, Oceanic and Space Sciences Department, University
of Michigan, Ann Arbor

E. Villalon

Center of Electromagnetic Research, Northeastern University, Boston, Massachusetts

Abstract. The evolution of the bounce-averaged ring current/radiation belt proton distribution is
simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is
assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus
energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary.
The problem is not solved self-consistently. During the simulation period, interactions with ring
current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the
presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion
coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra
et al. (1994) and are adopted for the present study. The simulation treats the energy range, E = 80 keV,
within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e.,
Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An
interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the
edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of
magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles.
The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-
averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton
fluxes. OGO 5 observed order of magnitude enhancements in locally mirrdring energetic protons at
altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas,
1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones.
The similarity between the observed distributions and those resulting from this simulation raises the
possibility that interactions with plasmaspheric hiss play a role in forming and maintaining the
characteristic zones of anisotropic proton precipitation in the subauroral ionosphere. Further
assessment of the importance of this process depends on knowledge of the distribution in space and
time of ducted plasmaspheric hiss in the inner magnetosphere.

L. Introduction during this interaction with the energetic protons and then

OGO 5 observed enhancements in locally mirroring protons damped by thermal electrons during the course of their

at altitudes between 350 and 1300 km on field lines associated
with stable auroral red (SAR) arcs in the subauroral ionosphere
[Lundblad and Soraas, 1978]. Pitch angle distributions,
observed by the OGO 5 spacecraft, were highly anisotropic in
the sense that fluxes at small pitch angles were orders of
magnitude less than locally mirroring ones. Protons that are
locally mirroring at these altitudes map to the equator near the
edge of the atmospheric loss cone. The observed incomplete
filling of the loss cone was assumed to indicate weak pitch
angle scattering near the equatorial plane. Resonance with ion
cyclotron waves was proposed as the source of this weak pitch
angle scattering [Cornwall et al., 1971; Lundblad and Soraas,
1978). The ion cyclotron waves were thought to be amplified
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propagation through the inhomogenous magnetospheric
environment [Cornwall et al., 1971]. The energy transferred to
the thermal electron gas in the process leads to increased
temperatures at the foot of these field lines and to an associated
enhancement in 6300 A emissions characteristic of SAR arcs.
However, in the ensuing time period, ion cyclotron waves have
been observed only rarely in the outer plasmasphere. During a
recent survey of Pc 1 waves in the inner magnetosphere
[Anderson et al., 1992], an occurrence frequency of 1% was
found at L values less than 5 for ion cyclotron waves with
frequencies between 0.1 and 4 Hz and amplitudes greater than
0.8 gammas. In contrast, the zones of proton precipitation,
described by Lundblad and Soraas [1978] and Voss and Smith
[1980] are a characteristic feature of the subauroral ionosphere,
as are the temperature enhancements associated with SAR arcs.
The present work assumes no direct relationship between
SAR arcs and the enhanced locally mirroring proton fluxes on
the same field lines but makes use of reported observations by
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the Dynamics Explorer (DE) satellite pair at high and low
altitudes on SAR arc field lines [Kozyra, 1986; Kozyra et al.,
1987a] to propose an alternative explanation for the
collocation of these phenomena. The DE spacecraft were in
coplanar polar orbits and thus were occasionally in the
position to observe the magnetospheric source and
ionospheric sink regions on SAR arc field lines nearly
simultaneously. Magnetically conjugate DE 1 and 2 data sets
revealed the presence of large-scale density structures and
associated regions of enhanced plasmaspheric hiss amplitudes
at high altitudes on field lines that thread SAR arcs in the
ionosphere. Theoretical models using these and other data
sets, in combination with ground-based photometric
observations of 6300 A emission, demonstrated that Coulomb
drag transfers sufficient energy from the ring current to the
thermal electron gas to maintain the observed ionospheric
electron temperatures and associated SAR arc emissions
[Kozyra et al., 1987b, 1993] without the need for wave
damping. The possible role of waves in enhancing the
transport of energy from the plasmaspheric thermal electron
populations into the underlying ionosphere is still under
debate [Thorne and Horne, 1992]. Coulomb drag as a
mechanism for the energy transfer was first proposed by Cole
[1965]. However, the importance of ring current oxygen ions
as a dominant energy source for the thermal electrons only
became clear during the DE mission [Kozyra et al., 1987b].

The unique nature of the DE data sets also allowed a detailed
comparison between the thermal plasma characteristics at high
and low altitudes. Structures in the electron temperature
signatures and associated SAR arc emissions at ionospheric
heights (i.e., structured temperature peaks, multiple
temperature peaks, etc.) map along field lines to single or
multiple, large-scale density structures in the outer
plasmasphere [Horwitz et al., 1986; Kozyra, 1986; Kozyra et
al., 1987a]. This relationship is not surprising. The Coulomb
collision frequency is proportional to both the energetic ring
current ion flux and the thermal plasma density. Therefore
elevated collision frequencies, energy transfer rates and
ionospheric electron temperatures are expected to occur on field
lines associated with thermal plasma density enhancements in
the outer plasmasphere.

Apart from their role in structuring Coulomb energy transfer
rates, large-scale density enhancements can directly affect the
propagation of plasmaspheric hiss through ducting.
Plasmaspheric hiss is a right-hand-polarized, whistler mode
emission that fills the plasmasphere almost continuously
[Thorne et al., 1973]. Ducting, which maintains small wave
normal angles along the ray path, occurs in the presence of
gradients in the thermal plasma. Such gradients can be found in
association with detached plasma regions, the plasmapause and
density structures (ledges, double plasmapauses, etc.) in the
outer plasmasphere and dusk bulge region. Hayakawa et al.
[1986a] derived hiss wave normal directions of less than 25° in
detached plasma regions near the equatorial plane. They also
presented evidence which reasonably suggests that signatures
of the detached plasma regions extend into the topside
ionosphere and that the hiss may be ducted down to these
altitudes. As mentioned previously, Kozyra et al. [1987a]
presented observations of intense hiss emissions within large-
scale density structures at plasmaspheric altitudes on SAR-arc
field lines. Though a direct experimental determination of the
wave-normal directions of the enhanced hiss emissions was not
possible, it is very likely that the waves were ducted. The

KOZYRA ET AL.: ENERGETIC PROTON RESONANCE WITH DUCTED HISS

evidence for this is indirect. Nearly simultaneous observations
by DE 1 and 2 [Kozyra, 1986] at high and low altitudes on the
same field lines indicate enhanced wave electric fields over the
frequency interval 100 Hz to several kHz. Enhanced wave
amplitudes over the same range of L values at low altitudes
imply that these waves are ducted. Ducting maintains small
wave normal angles and allows the waves to reach low
altitudes. In contrast, during unducted propagation, hiss
emissions will most likely reflect at the lower hybrid frequency
and never reach the ground [Church and Thorne, 1983; Huang
and Goertz, 1983].

Observations confirm that the plasmapause density gradient
is also capable of ducting plasmaspheric hiss. Small wave
normal angles were observed just inside the plasmapause near
the equatorial plane by Hayakawa et al. [1986b]; however, two
different groups of wave normal angles, one moderate and one
large, were observed deeper in the plasmasphere. In all cases
studied by these authors at high geomagnetic latitudes, two
different groups of wave normal angles were seen, both large.
In fact, recent observational evidence suggests that hiss wave
normal angles are quite oblique throughout much of the
plasmasphere [Storey et al., 1991; Sonwalker and Inan, 1988].
The present work does not deal with these regions of oblique
hiss but focuses on hiss emissions generated within detached
plasma regions or large-scale density structures in the outer
plasmasphere.

Wave amplification via cyclotron resonance with ring
current electrons is maximized in the presence of small wave-
normal angles and occurs over a larger fraction of the flux tube.
The observed order of magnitude increase in the hiss amplitudes
within the plasmaspheric density structures is interpreted to
result from the favorable effects of ducting on wave
amplification. An interesting consequence of ducting in the
context of the present theory is that maintaining small wave-
normal angles decreases resonant proton energies to values of
the order of ring current and radiation belt energies. Past
studies have ignored proton resonances with whistler mode
waves, assumed to be propagating at highly oblique wave-
normal angles, because the required proton energies for the
resonant interaction reach MeV energies.

The association between large hiss amplitudes and thermal
density enhancements has been pointed out by a number of
authors [Angerami, 1970; Carpenter et al., 1981; Chan and
Holzer, 1976; Chan et al., 1974; Scarf and Chappell, 1973] in
relation to detached plasma regions. More recently, Koons
[1989] observed intense hiss in association with whistler ducts
in the outer plasmasphere (4 to 7 R g)- The density
enhancements (up to 190%) associated with the ducts were
much larger than values (<40%) reported for ducts at larger
radial distances in the studies referenced above. Hiss emissions
within the detached plasma structures and whistler ducts were an
order of magnitude stronger than hiss emissions on adjacent
field lines. The relative enhancement of the hiss within these
regions agrees very well with observations in the outer
plasmasphere (L< 4) reported by Kozyra et al. [1987a].

The significance to ring current dynamics of resonant proton
interactions with strong ducted hiss emissions depends on thé
amount of time that protons spend traveling through regions
containing these emissions. A major assumption in the
present work is that ring current electrons are able to resonate
with and amplify hiss under conditions present in the outer
plasmasphere. When the hiss is maintained at small wave
normal angles (e.g., by ducting along density gradients),
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protons at ring current energies are able to resonate with and
damp the waves. A fundamental question is what portion of the
time do energetic ion orbits intersect with density
enhancements in the outer plasmasphere. During the initial
phase of ring current injection there is probably no interaction
with the plasmasphere, because the same electric fields which
cause the injection of energetic ions into the inner
magnetosphere will evacuate the plasmasphere in the midnight
region filled by the newly injected ring current. However, as
the energetic ions drift clockwise around the Earth, they will
first likely encounter detached plasmaspheric regions in the
dusk sector and then the main body of the plasmasphere
drifting sunward in the dayside in response to the increased
dawn-to-dusk electric fields. As the enhanced electric fields
subside, the plasmasphere will begin to refill and the energetic
jon orbits will intersect with an increasing greater region of
the plasmasphere.

Information on the spatial extent, duration and frequency of
occurrence of regions of ducted hiss would allow an estimation
of their cumulative effect on the proton distribution. A
complete characterization of these density structures has not
yet been achieved but some information is available. Recent
studies indicate that large-scale density irregularities, similar
to the ducts discussed above, extend well into the outer
plasmasphere [Carpenter et al., 1993; Horwitz et al., 1990].
These studies do mot examine the hiss emissions associated
with the density irregularities. Density irregularities in the
outer plasmasphere were reported as far back as the mid 1970s.
Chappell [1974] described the difficulty in defining detached
plasma regions that occur very near the plasmapause as
different from the density irregularities inside the
plasmasphere. Horwitz et al. [1990] performed a statistical
study of the plasmapause location and structure using DE 1
satellite data. They found that a double-ledge structure was the
most common plasmapause shape on the eveningside,
occurring some 50% of the time. Other more complicated
large-scale density structures also occurred in this local time
sector. Carpenter et al. [1993] carried out a study of the outer
plasmasphere and dusk bulge region using thermal density data
inferred from whistler observations by ground stations and
measured in situ by the DE 1, ISEE 1 and GEOS 2 satellites.
They observed density irregularities (with factor of 2 to 10
enhancement factors) routinely near the plasmapause in the
postdusk sector following magnetic storms. These density
irregularities were inferred to be a consequence of the physical
processes involved in the erosion of the plasmasphere and
formation of the sharp plasmapause boundary. They persist
during an extended period of calm following the storm
perturbations. Large-scale density gradients associated with
these structures should be effective at guiding whistler mode
emissions. Since density irregularities in a range of scale sizes
are a common feature in the outer plasmasphere, ducted
plasmaspheric hiss must also be a frequent occurrence in the
evening local time sector.

To determine the effects of ducted plasmaspheric hiss on the
ring current proton distribution, Kozyra et al. [1994] calculated
diffusion coefficients, averaged over a bounce orbit, for
protons in resonance with right-hand polarized whistler. mode
waves. A wave distribution spanning frequencies 100 - 1100
Hz characteristic of plasmaspheric hiss in the outer
plasmasphere, with reasonable amplitudes (5x10° y*/Hz), and a
distribution of wave-normal angles between 0° and 45° was
adopted. During the wave-proton interaction, the proton
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experiences multiple resonances with the hiss band due both to
the finite frequency bandwidth of the waves and the
longitudinal inhomogeneity in the magnetic field. The
inhomogeneity in the magnetic field produces a constant
variation in the pitch angle (and parallel velocity) of the
proton as it bounces between mirror points and a resulting
wransition between resonances. The crossing of multiple
resonances greatly enhances the diffusion experienced by the
proton during the interaction. The important enhancement in
proton diffusion due to the crossing of multiple resonances was
pointed out in a different context by Villalon and Burke [1992,
1994]. They examined the interaction between radiation belt
protons and whistler mode waves at frequencies between 0.5 fcc
and 1.0 f_, where [, is the proton gyrofrequency. These are
considerably higher frequencies than are treated in the present
study. Significant diffusion into the loss cone was achieved
during second-order resonance with the whistler mode waves.
In the present study, only first order resonance was treated. The
diffusion coefficients were summed over resonances between
n=100 and n=-100. Pitch angle diffusion dominates for large
wave-normal angles; energy diffusion becomes important for
small pitch angles, near the edge of the atmospheric loss-cone.
The filling of the loss cone is minimal. Lifetimes for diffusion
in energy were estimated to be of the order of a few days at pitch
angles near ~25°-30°. These lifetimes are comparable to
Coulomb energy loss and charge exchange lifetimes for
protons with energies > 80 keV.

In the present work, the time-dependent bounce-averaged
diffusion equation is solved, including pitch angle and energy
diffusion, and the evolution of the proton distribution function
is examined during resonant interactions with ducted
plasmaspheric hiss. The problem is not solved self-
consistently. The wave characteristics are fixed during the
simulation period. The plasmaspheric hiss is assumed to have
been generated using the free energy contained in the ring
current electron distribution (not represented in the simulation)
and to be damped by high-energy ring current and radiation belt
protons. This constitutes an energy exchange between
medium-energy (tens of keV) electrons and high-energy (> 80 -
100 keV) protons using the plasmaspheric hiss as a mediary.
The high-energy (> 100 keV) proton population decays over
very long timescales due to Coulomb drag and charge exchange
losses [cf. Fok et al., 1991], responding adiabatically to
changes in the magnetic field produced by the lower-energy (1 -
80 keV) ring current ion injections associated with magnetic
storms. The damping of the plasmaspheric hiss by protons in
the high-enérgy 1ail of the distribution is expected to be much
smaller than the amplification of the hiss by the tens of keV
ring current electrons. Diffusion coefficients, used in the
present study, are those given by Kozyra et al. [1994] but
scaled to more-conservative wave amplitudes of 1.3 x 10°®
¥/Hz. Tt will be shown that energy diffusion at equatorial pitch
angles near 25° is capable of producing enhancements in the
locally mirroring high-energy proton flux at low altitudes that
are confined to field lines threading regions of enhanced hiss
amplitudes in the outer plasmasphere. The model proton
distributions are consistent with observations of energetic
proton flixes in the topside ionosphere.

2. Diffusion Model

In the present treatment, the time-dependent bounce-
averaged diffusion equation is solved numerically. This




21,914

equation was derived in spherical coordinates by Lyons [1974a]
as

ol Ly
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where f £ is the distribution function of species £, f ol is the
distribution function of species £ averaged over a bounce
period, a is the particle pitch angle, and «, is the particle pitch
angle at the equator. The bounce period, Tz =1,5(c,), is the
travel time from one mirror point to the conjugate mirror point
and back again, where 1, =4LR; /v; while L is the equatorial
crossing distance of a field line in units of Earth radii (Rg),
s(a,) gives the small variation of Tz with equatorial pitch
angle o,,A is magnetic latitude, and A, denotes the magnetic
latitude of the mirror point.

The diffusion coefficients, time-averaged over a bounce
orbit, were calculated by Kozyra et al. [1994] using the
theoretical formulation of Lyons [1974b]. The present model
assumes that the plasmaspheric hiss is generated during
resonance with ring current electrons and maintained against
proton damping during the time interval of the simulation.
Therefore the wave spectrum is held constant during the
simulation. This assumption is examined here. Plasmaspheric
hiss, once generated, damps out very slowly due to a scarcity of
resonating populations in the plasmasphere [Church and
Thorne, 1983; Huang and Goertz, 1983]. While this is true
relative to the timescale for wave growth, much longer
timescales (approximately tens of days) are involved in the
proton damping. -During this time period, numerous ring
current electron injections are likely to occur and wave
amplitudes vary over the range 10™ to 107 v*/Hz [Smith et al.,
1974]. These frequent ring current electron injections will
maintain the hiss spectrum against losses due to proton
damping. A further complication is introduced by the time
variation in the thermal density enhancements responsible for
ducting the plasmaspheric hiss and maintaining the necessary
small wave-normal angles. These ducts may exist only some
fraction of the time and only over some percentage of the
particles drift orbit. The details of the background ducted hiss
spectrum must be worked out on the basis of satellite
observations. At the present time, ducts are assumed to exist
during the entire simulation period over the full proton drift
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orbit. The hiss power spectral density versus frequency was
described by a Gaussian distribution between 100 and 1100 Hz
with half width of 400 Hz and peak value at 600 Hz of 5x10°°
Y'/Hz in the work by Kozyra et al. [1994]. For the present
study, peak power spectral density, seen by the proton, is
assumed to average to 1.3x10°° y’/Hz over the simulation
period and the diffusion coefficients were scaled to this value.
The wave-normal angle distribution was taken to be a Gaussian
centered at 0° with maximum angle of 45°. Figure 1 is a contour
plot of (Dm),(Dm, )(: (D“,l )), and (Dw) versus the energy and
pitch angle of the resonating proton at an L value of 4 with a
background thermal density of 500 cm™. Pitch angle scattering
is important at large piich angles but becomes increasingly
negligible as pitch angles approach the atmospheric loss cone.
Diffusion of protons into the loss cone as a result of pitch
angle scattering is relatively ineffective. However, energy
diffusion maximizes at pitch angles near the edge of the
atmospheric loss cone. The fact that the magnitude of the
energy diffusion coefficient depends on pitch angle means that
the energy diffusion near the loss cone will create flux
gradients in pitch angle as well as energy space. These
gradients at small pitch angles will accelerate the rate of proton
diffusion into the atmospheric loss cone.

This initial model does not include the effects of Coulomb
scattering or charge exchange losses on the distribution
function. In the energy range below approximately 80 keV,
charge exchange losses will dominate the evolution of the
proton distribution. For proton energies near 80 keV, charge
exchange lifetimes, Coulomb loss lifetimes and wave-particle
energy diffusion lifetimes are all comparable [see Kozyra et al.,
1993, Figure 11]. The present study seeks to examine the

5x10%cm3s3
1x10°em? 2

1x10"cm?s™

Contour Spacing:
Minimum Value :

- - 3
L=4, Ne=500cm Maximum Value :

1000
E(kev)
10
1000
Negative |
<Dov> |

E(kev)

,o J

N

0 Pitch Angle 0

Figure 1. Contour plots of (upper) (Dm) (middle)
(Dm)=(Dn) and (lower) (Dw) versus energy and equatorial
pitch angle. The wave distribution was assumed to be (1) a
Gaussian distribution in frequency over the range 100 to 1100
Hz with half width of 400 Hz and peak value at 600 Hz of 1.3 x
10" ¥’/Hz and (2) a Gaussian distribution in wave-normal angle
over the range 0° to 45° with peak value at 0° wave-normal
angle.
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effects of resonance with plasmaspheric hiss on protons with
energies above ~80 keV. In this energy range, resonance with
plasmaspheric hiss will have a significant effect on the
evolution of the proton distribution function; other loss
processes will be neglected.

3. Numerical Technique

The bounce-averaged diffusion equation can be conveniently
solved in conservative form. ‘Thus (1) is rewritten as

i 3=V {((D) v)%.)- (f)((D) Y) } @

a

where a=s(cxo)cosao, and f'o =af,. The quantity s(ao).
which gives the small variation in the bounce period with
equatorial pitch angle, is approximately s(ao) = 138 -
0.32(sina, + 4sina,) [Lyons, 1974b]. Note that the
normalized distribution function f, is the conserved quantity,
rather than f, due to the temporal averaging of Boltzmann's
equation over one bounce period. As particles with a given
energy bounce back and forth between mirror points, they fill a
certain volume in configuration space. This volume depends
on the location of the mirror points. Thus, as the mirror points
change, the particle distribution at any point along the field
line must also vary, in order to maintain a constant number of
particles within the changing volume in configuration space.
Equation (2) was solved by a finite volume technique. In this
numerical method, the volume-average change in f, during a
time step &, is proportional to the sum of the fluxes F leaving
each face of the volume element, times the interface area A;:

F=ASFA

where V is the volume of the element. The fluxes in the two
coordinate directions, v and ¢, are given by

¥ (D) df F{Dw)2a

3)

F (D )av v oo av oo @)
¥ , (Pua) 3 F(Dan) 3a
Fa (D ) v v da av oo

The partial derivatives in (4) were calculated numerically at
each face with a second-order central difference scheme. It
should be noted that the transformation x =log,(E=mv*/2)
was actually used in the numerical solution (leading to a
slightly altered form of (4)). This was done so that high
resolution could be maintained at low energies in E while still
maintaining a relatively large overall range in energy.
Energies ranged from 10 keV to 1000 keV, while pitch angles
ranged from O to ®. Constant cell widths Ao and Ax were
employed, with 45 steps in a and 51 in x, giving a total of
2295 volume elements. Boundary conditions were chosen so
that no flux could enter or leave the computational domain,
except through the lower-energy boundary. At this boundary, E
= 10 keV, the flux entering the computational domain was
chosen to maintain a constant value for f.

A two-step Runge-Kutta method was selected to advance the
numerical solution in time. This method leads to second-order
accuracy in time, accompanying the second-order accuracy of
the spatial discretization. The numerical method was found to
be stable as long as the time step was sufficiently small, Ar <2
hours. Several other numerical methods, such as Lax-Wendroff,
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were found to be unstable. The major stability problem was
caused by the combined hyperbolic and diffusive nature of (2).

The effects of a loss cone were artificially added by including
a loss term for pitch angles less than or equal to 9 deg. Loss
timescales were chosen to be slower than naturally occurring
precipitation timescales in order to speed up the numerical
solution and to maintain a stable solution near the loss cone.
In the present solution, the edge of the loss come is under
resolved and artificially broad, leading to an underestimation of
transport into the loss cone. However, the net effect on
transport in the interior of the simulation domain, away from
the loss cone, is negligible.

4. Time Evolution of the Proton Distribution
Function

The initial conditions for the simulation were taken from
Williams et al. [1976], who present observations of ring
current ions, assumed to be protons, in the energy range of a
few to several hundred keV. These observations were made on
field lines approximately associated with SAR arc emissions in
the ionosphere. The distribution function versus energy was
represented by the sum of three different analytical fits over
specified energy intervals as follows:

f(E)=1.94x107 E%%%* 12keV<SE<9 keV
f(E)=4.50x10°E° 9 keV < E <28 keV

f(E)=1.63x10" E™*¥ 28 keV < E < 280 keV

The pitch angle distribution was taken to be isotropic
independent of the proton energy with the exception of an
artificially introduced loss cone. Contours of the initial -
distribution function versus pitch angle and energy are
presented in Plate la.

The evolution of the proton distribution function is followed
during resonance with the ducted plasmaspheric hiss spectrum
described in section 2. Plates 1b and lc are snapshots of the
distribution function after 20 and 40 days, respectively. After
40 days time. the pitch angle distribution has changed
dramatically from the isotropic initial condition to exhibit a

&)

distinct maximum at pitch angles near the edge of the
atmospheric loss-cone. The peak shifts to larger pitch angles
with decreasing proton energy. Significant energization of the
protons occurs at the location of the peak. The peak in the
distribution function at modest pitch angles is a result of
energy diffusion that depends on pitch angle and maximizes
near 25°. Energy diffusion near the edge of the loss cone will
create a steep gradient in the distribution function and enhance
pitch angle diffusion into the loss cone. However, even in the
presence of this steep gradient, pitch angle diffusion is weak.
Figure 2 is a plot of the distribution function versus pitch
angle at a fixed proton energy of 250 keV at selected times
during the simulation. Protons with moderate pitch angles
damp wave energy and diffuse from lower to higher energies
during the simulation time interval producing a buildup in the
distribution function. The reason for the buildup in the
distribution function at moderate pitch angles is clearly
illustrated in Figure 3. Energy diffusion lifetimes reach a
minimum value at pitch angles near 27°. Diffusion in energy
occurs most rapidly in a band of pitch angles centered about the
lifetime minimum. As a consequence fluxes build up at these
moderate pitch angles as shown in Figure 2. At larger pitch
angles energy diffusion is too slow to produce significant
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90
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Plate 1. Contour plots of the equatorial proton distribution function versus energy and pitch
angle at (a) 0, (b) 20, and (c) 40 days elapsed time during the simulation.

changes in the distribution function over the time interval
displayed. )

The energy dependence of the diffusive buildup of flux in
velocity space is illustrated in Figure 4. In this figure, the
distribution function is plotted versus energy at 27° pitch
angle. The distribution function increases at all energies from
60 to 600 keV with the maximum relative increase between 200
and 250 keV. Particles in the distribution shown in Figure 4,
diffuse in time from lower energies to higher energies. This
increase in the distribution of particles with energies higher
than 60 keV is balanced by a loss in the distribution of
particles with energies less than 60 keV. Because of the log
scale, this balance is difficult to see. However, numerical tests
indicate that mass is conserved to 5 decimal places of accuracy
(single precision) during the simulation period.

S. Discussion

It is instructive to examine the energy increase in the ring
current protons and compare this to the energy available in the
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plasmaspheric hiss and in the ring current electrons that are
assumed to be the energy source for the plasmaspheric hiss
emissions. The energy density of the initial equatorial
distribution of ring current protons is 237.6 keV cm’>. After
interacting with the plasmaspheric hiss for a simulation period
of 24 hours, the proton energy density rose to 238.2 keV cm™
and after 240 hours to 244.7 keV cm™. The rate of increase of
the energy density of the protons amounts to ~ 8 x 10” eV cm™
s or ~0.7 keV cm™ d. This should be compared to the energy
density, ~0.06 eV cm™, of plasmaspheric hiss assuming an
amplitude of ~1.3 x 10’ ‘yz Hz! and small wave-normal angles
in the outer plasmasphere. The implication of the numbers
quoted above is that the timescale for depleting the hiss in the
above plasma system is approximately 7 s. It is critical that
the electron ring current replenish the hiss on timescales short
in comparison with this time period.

A crude estimate of the energy density of ring current
electrons can be made. Electrons are generally believed to
account for about 20% of the ring current energy density; the
bulk of the ring current energy is carried by the ion
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Figure 2. Equatorial distribution function versus pitch angle
for 250 keV protons at 0, 10, 20, 30, and 40 days elapsed time
during the simulation.

components [cf. Frank, 1967]. Hamilton et al . [1988]
observed ring current energy densities in the range 500-1300
keV cm™ at low L value (L~2-3) during the main phase of a great
magnetic storm. The energy density of the initial spectrum,
used in the present study, is more typical of moderate to high
magnetic activity. Typical ring current ion distributions
during a moderate storm imply an electron distribution with
energy density in the range of many tens of keV cm” which is
assumed to be replenished by injections multiple times during
the simulation period. As was expected, the energy contained
in the ring current electrons is much greater than the energy
contained in the plasmaspheric hiss. The hiss amplitudes and
associated energy densities, adopted in the study, are not
inconsistent with the available ring current electron energy
density for moderate to high-activity levels. .
Cornilleau-Wehrlin et al. [1985] examined the interaction
between energetic electrons and whistler mode waves (0.2-2
kHz) experimentally within the framework of quasi-linear
theory using GEOS 1 and 2 observations. The wave amplitudes
in their study ranged from 3.2 x 10" ¥"/Hz to 5 x 107 y’/Hz.
They estimate the timescale to be 5 ms to 0.1 s for the linear
phase during which the wave amplitudes grow exponentially
prior to saturation. Therefore the timescale to replenish the
waves is about 2 orders of magnitude shorter than the timescale
for the protons to damp out the wave energy. It is reasonable

Energy Diffusion Lifetimes (Days)
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Figure 3. Bounce-averaged energy diffusion lifetimes in
arbitrary units versus proton energy and equatorial pitch angle
for the conditions of the simulation. These lifetimes are taken
from Kozyra et al. [1994].
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Figure 4. Equatorial distribution function versus energy for
protons with an equatorial pitch angle of 27° at 0, 10, 20, 30,
and 40 days elapsed time during the simulation.

to assume that, with multiple ring current injections, the
electrons will be able to maintain the hiss amplitudes in the
presence of the much slower damping of the hiss by the ring
current protons. However, more careful studies of the coupled
system must be carried out to establish the importance of this
mechanism to the energetics of the protons.

An interesting result of the simulation is that energy
diffusion maximizes at moderate pitch angles near the edge of
the atmospheric loss cone and, over these pitch angles, creates
an order of magnitude enhancement in the bounce-averaged
proton distribution function, viewed at the equator. Scattering
of particles into the loss cone is weak resulting in a nearly
empty loss cone. An enhancement in the equatorial
distribution function, at pitch angles near the edge of the loss
cone, is seen in the ionosphere as an increase in the locally
mirroring proton flux. Order of magnitude enhancements in
locally mirroring energetic protons were observed by OGO 5 at
altitudes between 350 and 1300 km and invariant latitudes
between 50° and 60° [Lundblad and Soraas, 1978]. In addition,
proton distributions observed at these altitudes were highly
anisotropic in pitch angle with nearly empty loss cones. The
observed characteristics are consistent with the main features
of the proton distribution function, that evolved during
interaction with ducted plasmaspheric hiss within the
simulation period. This raises the possibility that interactions
with plasmaspheric hiss play a role in forming and
maintaining the characteristic zones of anisotropic proton
precipitation in the subauroral ionosphere. Future assessment
of the importance of this process depends on the distribution in
space and time of ducted plasmaspheric hiss in the inner
magnetosphere.

6. Summary and Conclusion

A numerical solution to the time-dependent bounce-averaged
diffusion equation has been undertaken to examine the
evolution of the proton distribution function during resonance
with ducted plasmaspheric hiss. Diffusion coefficients in
energy, cross energy-pitch angle and pitch angle were taken
from Kozyra et al. [1994] but scaled to represent peak power
spectral density in the hiss distribution of 1.3x10° ¥*/Hz. For
these wave amplitudes, energy diffusion lifetimes reach
minimum values of a few to tens of days. These lifetimes are
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comparable to charge exchange loss and Coulomb drag
lifetimes for proton energies in the range > 80 keV so the
simulation is valid only above 80 keV. The wave power
spectral density distribution is held constant during the
simulation period and is represented as (1) a Gaussian
distribution in frequency over the range of 100-1100 Hz, with
half width of 400 Hz, and peak value at 600 Hz; and (2) a
Gaussian distribution in wave-normal angle over the range +
45° with peak value at 0°. The problem is not solved self-
consistently. This wave distribution is produced by the free
energy in the ring current electrons (not treated in the
simulation model) and is assumed to be maintained by
resonance with this population during the simulation period.
An initial proton distribution, observed by Explorer 45 on
field lines associated with a SAR arc [Williams et al., 1976]
during a moderate magnetic storm, is adopted at t=0. The pitch
angle distribution was assumed to be isotropic with the
exception of an arbitrarily imposed loss cone at < 9° equatorial
pitch angle. Major results of the simulation are as follows:

1. Pitch angle diffusion maximizes for large equatorial pitch
angles and rapidly decreases as the proton pitch angle
decreases. As a result, diffusion of protons into the
atmospheric loss cone is weak. Highly anisotropic pitch angle
distributions are maintained.

2. Energy diffusion maximizes at small to moderate pitch
angles just outside of the atmospheric loss cone. This
diffusion creates an order of magnitude enhancement in the
distribution function at pitch angles near 27° by the end of the
simulation period (At= 40 days) for 250 keV protons and
smaller but still substantial enhancements for protons in the
energy range of ~80 to 600 keV.

3. The large enhancement in the distribution function just

outside of the atmospheric loss cone creates a steep slope in
the distribution function for small pitch angles and enhances
the filling of the atmospheric loss cone. However, even with
this steepened gradient, the diffusion into the loss cone is
weak. ,
4. The changes in the distribution function, when mapped to
low-altitude Earth orbit, appear as an order of magnitude
increase in locally mirroring protons with very negligible
filling of the atmospheric loss cone. This increase in the
locally mirroring flux is confined to field lines that thread
large-scale ducted hiss regions in the outer plasmasphere and
associated thermal density structures. SAR arcs also appear at
the foot of field lines that map to the large-scale thermal
density structures, but have no association with the proton
precipitation in this scenario. Kozyra et al. [1987b] have
shown that Coulomb collisions between ring current O* and
thermal electrons can supply sufficient energy to maintain a
SAR arc in the ionosphere. The energy deposition rate via this
process is directly proportional to the thermal plasma density
and thus also maximizes in association with these large-scale
density structures in the outer plasmasphere.
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